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Abstract

We propose pair copula constructed point-optimal sign tests in the context of linear and nonlinear
predictive regressions with endogenous, persistent regressors, and disturbances exhibiting serial (nonlinear)
dependence. The proposed approach entails considering the entire dependence structure of the signs to
capture the serial dependence, and building feasible test statistics based on pair copula constructions of
the sign process. The tests are exact and valid in the presence of heavy tailed and nonstandard errors, as
well as heterogeneous and persistent volatility. Furthermore, they may be inverted to build confidence
regions for the parameters of the regression function. Finally, we adopt an adaptive approach based
on the split-sample technique to maximize the power of the test by finding an appropriate alternative
hypothesis. In a Monte Carlo study, we compare the performance of the proposed “quasi”’-point-
optimal sign tests based on pair copula constructions by comparing its size and power to those of
certain existing tests that are intended to be robust against heteroskedasticity. The simulation results

maintain the superiority of our procedures to existing popular tests.
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1 Introduction

Predictive regressions are frequently encountered in the economics and finance literature. Within
this framework, the regressors are often highly persistent (and potentially nonstationary) with errors
that exhibit contemporaneous correlation with the disturbances in the predictive regression. This leads to
endogeneity, as a result of which the least-squared estimator of the regression parameters is biased. In such
settings, t-type tests possess a non-standard distribution and inference using asymptotic critical values is
no longer valid [see Mankiw and Shapiro (1986) and Stambaugh (1999) among others]. The econometric
analysis of predictive regressions has been addressed extensively and numerous papers have suggested
solutions to overcome this problem. These include reducing the bias in finite samples [see Nelson and Kim
(1993) and Stambaugh (1999) among others| or self generated instrumental variables (IVs) that eliminate
endogeneity [see Magdalinos and Phillips (2009), Phillips and Lee (2013) among others]. However, many
of these studies impose strict assumptions on the degree of persistency of the regressors [see Phillips
(2014) for an overview|. In this paper, we propose pair copula constructed point-optimal sign-based
tests (PCC-POS-based tests hereafter) in the context of linear and nonlinear predictive regressions. The
proposed tests are robust in the presence of persistent/endogenous regressors and errors, heterogeneous
and persistent volatility, and disturbances that exhibit serial (nonlinear) dependence. Moreover, they
are exact, consider the entire dependence structure of the signs and may be inverted to build confidence
regions for the parameters of the regression function.

Sign-based tests, such as those proposed by Campbell and Dufour (1995, 1997), Luger (2003),
and Dufour and Taamouti (2010) are randomized tests with a randomized distribution under the null
hypothesis of unpredictability [see Pratt and Gibbons (2012) for a review of randomized tests]. Hence,
under mild assumptions these procedures are distribution-free and do not suffer from the issues encountered
by t-type statistics in finite samples. These class of tests are valid in the presence of non-normal
distributions and heteroskedasiticty of unknown form [see Boldin et al. (1997) and Taamouti (2015) for a
review of sign-based tests|. Furthermore, Dufour and Taamouti (2010) show that the heteroskedasticity
and autocorrelation corrected tests developed by White (1980) (more commonly referred to as “HAC”
procedures) are plagued with low power when the errors follow GARCH-type structures or there is a
break in variance. To address these issues, Dufour and Taamouti (2010) propose point-optimal sign-
based (POS-based) inference to test whether the conditional median of a response variable is zero against
a linear regression alternative, where these procedures are further extended to nonlinear models.

In an earlier paper, we proposed an extension of the POS-based tests within a predictive regression
framework. However, in order to obtain feasible test statistics, we imposed a Markovian assumption on

the sign process. This paper relaxes the Markovian assumption on the signs, by decomposing the joint



distribution of the signs using models proposed by Panagiotelis et al. (2012) for multivariate discrete
data based on pair copula constructions. The latter allow us to build feasible test statistics that are
robust against heavy-tailed and asymmetric distributions, provided that the errors have zero median
conditional on their own past and the explanatory variables. The PCC-POS-based tests are shown
to be robust against non-standard distributions and heteroskedasticity of unknown form, and have the
highest power among certain parametric and nonparametric tests that are intended to be robust against
heteroskedasticity. Moreover, as in Dufour and Taamouti (2010), they can be inverted to produce a
confidence region for the vector (sub-vector) of the parameters.

Although, the literature surrounding sign-based and sign-ranked inference is vast, the focus of the
POS-based tests constructed by Dufour and Taamouti (2010) is to maximize power at a nominated point
in the alternative parameter space, such that the power of the POS-based test is close to that of the power
envelope - i.e. maximum attainable power for a given testing problem [see King (1987)]. Similarly, the
PCC-POS-based tests are Neyman-Pearson type tests based on the signs, and as in Dufour and Taamouti
(2010) a practical problem concerns finding an alternative at which the power of the PCC-POS-based
tests is close to that of the power envelope. By conducting simulations exercises, Dufour and Taamouti
(2010) find that the power of the POS-based tests is shifted close to the power envelope, when 10% of
the sample is used to estimate the alternative and the remaining portion to calculate the test-statistic.
Our simulations using a variety of split-sample PCC-POS-based tests confirm these findings.

Due to the nonlinear nature of the signs, there is inherent uncertainty regarding the structure of sign
dependence. Therefore, it is important to consider the entire dependence structure of the signs. One
approach for computing the joint distribution of the signs s(y1),--- ,s(yr), where s(y;) = Lr+yugo3{¥i}
entails taking advantage of copula functions [see Sklar (1959)], which express the joint distribution of the
signs in terms of i) the marginal distributions of the individual signs; and ii) the copula models capturing
the dependence of the T signs. As the signs are discrete, the likelihood function of the POS-based tests
under the alternative hypothesis can then be calculated using rectangle probabilities and in turn estimated
using copulas with closed analytical form. However, this approach would not yield feasible test statistics,
as the number of multivariate copulas that need to be evaluated increase at an exponential rate with
growing sample sizes T. As a result of this curse of dimensionality, the literature concerning calculating
probability mass functions (p.m.f hereafter) using discrete data is limited to low-dimensional data and
copulas that are fast to calculate [see Nikoloulopoulos and Karlis (2008, 2009) and Li and Wong (2010)].

To propose feasible POS-based test statistics within a predictive regression framework, we use a
discrete analogue of the vine PCCs introduced by Panagiotelis et al. (2012). The likelihood function of

the signs under the alternative hypothesis can then be decomposed as a vine PCC under certain set of



conditions that are later outlined in the paper. The most important advantage of this method is that for
a sample of size T, only 27 (T —1) bivariate copula evaluations are required, as opposed to 2T multivariate
copula evaluations using rectangle probabilities. Another advantage of the vine PCC methodology is that
model selection techniques can be used to identify the conditional independence in the process of signs
in order to create more parsimonious PCC models.

The rest of the paper is organized as follows: in Section 2, we motivate the use of the discrete analogue
of the vine PCC for building POS-based tests. In Section 3, we outline the conditions under which vine
PCCs can be implemented and we also discuss the choice of the PCC model. We then propose PCC-
POS-based test statistics for linear and nonlinear models. Secion 4, discusses the estimation approach
implemented for the vine PCC models. In Section 5, we derive the power envelope and highlight the
choice of the alternative hypothesis for computing the PCC-POS-based test statistic. In Section 6, we
discuss the problem of finding a confidence set for a vector (subvector) of parameters using the projection
techniques. In Section 7, we assess the performance of the proposed tests in terms of size and power.

Finally, in Section 8, we conclude the findings of the paper.

2 Framework

Consider a stochastic process Z = {Z; = (y, x}_1) : Q — RE+1 ¢ =1,2,---} defined on a probability
space (€, F, P). Within a framework of a predictive regression y; can linearly be explained by a vector

variable x;_1

ytzﬁlmtfl"»gtv t:]-a ,Ta (1)

where y; is the dependent variable and x;_; is an (k—+1) x 1 vector of stochastic explanatory variables, say
i1 = [Lz14-1, - ,xpe-1), B € R*+1) is an unknown vector of parameters with 8 = [Bo, 1, - - - , Bx)’
and

e | X ~ Fi(. ] X)

where Fi(. | X) is an unknown conditional distribution function and X=[x{, - ,x/}_,]"isan T x (k+1)
information matrix.

We follow Coudin and Dufour (2009) by considering the median as an alternative measure of central
tendency, which differs from the Martingale Difference Sequence (MDS hererafter) assumption. In the
latter, it is generally assumed that for an adapted stochastic sequence {Z;, F;,t = 1,2,---}, where F; is
a o-field in Q, Fs C F; for s < t, E{e; | Fs—1} = 0, V¢t > 1. Thus the alternative implies imposing a

median-based analogue of the MDS on the error process - namely we suppose that €; is a strict conditional



mediangale

1
P[€t>0’€t_1,X]=P[€t<0’€t_1,X]=§, (2)

with

€y = {@}a Et—1 = {517 e 7515—1}7 for ¢ Z 2.

Note (2) entails that e; | X has no mass at zero for all ¢, which is only true if ¢ | X is a
continuous variable. Model (1) in conjunction with assumption (2) allows the error terms to possess
asymmetric, heteroskedastic and serially dependent distributions, so long as the conditional medians are
zero. Assumption (2) allows for many dependent schemes, such as those of the form 1 = oy (21, - -+, x4—9)e€1,
ey =o1(x1, - ,x4-9,61, - ,€4-1)€ ,t = 2,--+ ,n, where €1, , €, are independent with a zero median.
In time-series context this includes models such as ARCH, GARCH or stochastic volatility with non-
Gaussian errors. Furthermore, in the mediangale framework the disturbances need not be second order
stationary.

Suppose, we wish to test the null hypothesis of unpredictability

HO:ﬂ:()? (3)

against the alternative

Hy:8=p. (4)

where 0 is a (k + 1) x 1 zero vector. Define the vector of signs as follows

U(T) = (s(y1),--- ,s(yr))

where for t =1,--- T
17 1fyt20
0,if y <0

s(ye) =

We consider Neyman-Pearson type test based on the signs. Thus, to build POS-based tests for testing
the null hypothesis (3) against the alternative (4), we first define the likelihood function of the sample in

terms of signs s(y1),- -, s(yr) conditional on X

T
LU(T), B, X) = Pls(y1) = s1,--- ,s(yr) = st | X] = [[ P [s(we) = s¢ | Sym1 =21, X] . (5)
t=1
with
SO = {0}) St-l - {5(3/1), et 7S(yt—l)}) for t Z 27



and

Pls(y1) = s1|Sg = 89, X] = Pls(y1) = s1 | X],

where each s; for 1 <t < T takes two possible values of 0 and 1. Under model (1) and assumption (2),
the variables s(e1),---,s(er) and in turn s(y1),---,s(yr) are i.i.d conditional on X, according to the
distribution
1
Pls(e1) =1]| X]=Pls(e1) =0 | X] = 2 t=1,---,T.
This results holds true iff for any combination of ¢ = 1,--- ,T there is a permutation 7 : ¢ — j such

that the mediangale assumption holds for j. Then the signs s(e1),- -, s(er) are i.i.d [see Theorem 1 of

Coudin and Dufour (2009)]. Therefore, under the null hypothesis of unpredictability we have

Plsy) =11 X] = Pls(y) = 0| X] =, t=1,-,T (6)

Consequently, under the null hypothesis of orthogonality, the log-likelihood function conditional on X is

given by

T T
Lo(U(1),0.%) = [[ Plstu) =1 X1 = (3)

On the other hand, under the alternative we have

T
Li(U(T), B, X) = HP[S(.%) =s¢| S =81, X],

t=1

where now fort =1,---,T

Yy = 53%71 + &¢.

In an earlier paper, we considered optimal sign-based tests (in the Neyman-Pearson sense), which
maximize power under the constraint P[Reject Hy | Ho] < «, where « is an arbitrary significance level
[see Lehmann and Romano (2006)]. Let Hy and H; be defined by (3) and (4) respectively. Then under

the assumptions (1) and (2), the log-likelihood ratio

(7)

SLT(BI) _ ln{Ll(U(T)71317X)} > ¢,

Ly(U(T),0,X)

is most powerful for testing Hy against H; among level « tests based on the signs (s(y1), -, s(yr))’,

where c¢ is the smallest constant such that

P[SLT(ﬁl) > cC ’ H()] < «a,



and « is an arbitrary significance level.

For POS-based tests within a predictive regression framework, the test statistic requires the calculation
of Plyy > 0| S;,_; =s8;.1,X]| and Plys < 0] S;,_; = s;_1,X]. The latter is not easy to compute, as it
involves the distribution of the joint process of signs s(y1), - - - , s(yr), conditional on X, which is unknown.
Therefore, to obtain feasible test statistics, we may impose a Markovian assumption on the sign process.
However, it may be important to capture the dependence structure of the entire process.

In this paper, we consider the entire dependence structure of the vector of signs by taking advantage

of copulas. The Theorem of Sklar (1959) states that there exists a copula C' such that

sy, o7 | X) = C(Fi(s1 | X), -+, Fr(sr | X)), (8)

where F' is a conditional joint cumulative distribution function (CDF hereafter) of the signs vector
S = (s(y1), -+ ,s(yr))" with conditional marginal distribution functions F} for j = 1,2,--- ,T. Copula

C'(.) is unique for continuous variables, but for discrete variables, it is unique only on the set

Range(F1) X - -+ x Range(Fr),

which is the Cartesian product of the ranges of the conditional marginal distribution functions. To
illustrate an example of non-uniqueness in the discrete case, let us consider a sample of two discrete
binary variables, say s(y1) and s(y2), with corresponding conditional marginal distribution functions Fj

and F5. We know that F; ~ Bernoulli(p;) for j = 1,2, such that

0, for s5; <0
Fi(sj | X)=4¢ 1-p;, for 0<s;<1 9)
1, for s;>1

Thus, Range(F;) = {0,1 — p1,1} and Range(F») = {0,1 — po, 1}, with the copula only being unique for
C(1 — p1,1 — p2), noting that C(0,1 — p;) = 0 and C(1,1 —p;) = 1 — p; for j = 1,2. However, this
non-uniqueness does not preclude the use of parametric copulas for modelling discrete data [see. Joe
(1997), Song et al. (2009)].

By considering this bivariate example, the conditional p.m.f can be expressed in terms of rectangle

probabilities,

Pls(y1) = s1,5(y2) = s2 | X] = Pls1 — 1 < s(y1) < 51,82 — 1 < s(y2) < 50| X]

:F(81,52|X)—F(51—1,52|X)



—F(81,82—1 ‘ X)+F(81—1,82—1 ’X),
and in turn in terms of copulas as follows

Pls(y1) = s1,8(y2) = s2 | X] = F(s1,82 | X) — F(s1 — 1,82 [ X)
—F(Sl,SQ—l|X)+F(81—1,52—1|X)
=C(Fi(s1 | X), Fa(s2 | X)) = C(Fi(s1 — 1] X), Fa(s2 | X))

—C(F1(51 |X),F2(82 -1 | X))+C(F1(Sl -1 | X),FQ(SQ —1 | X)),

which implies that the T-variate conditional likelihood function (5) can be expressed in terms of 27 finite

differences

Pls(y) = s1,-+slyr) =sp | X) = D - Y (1) HTPs(yy) < sy =iy, s(yr) < sp—ir | X]
i1=0,1  i7=0,1

= Y Y ()RR (s — iy | X), -+ Fr(se —ir | X)).
i1=0,1  ip=0,1
Evidently, the calculation of the conditional likelihood function (5) using this approach would require
2T multivariate copula evaluations, which is not computationally feasible. However, by employing the
vine PCC introduced later in the paper, we will show that this number can be reduced to only 27(T — 1)
bivariate copula evaluations. The latter method provides us with flexibility, since any multivariate discrete
distribution can be decomposed as a vine PCC under a set of conditions that are discussed in the following

Section.

3 Pair copula constructions of point-optimal sign tests for predictive

regressions

In this Section, we derive POS-based tests in the context of linear and nonlinear regression models
based on vine PCC decomposition. Following a structure similar to Dufour and Taamouti (2010), we
first consider the problem of testing whether the conditional median of a vector of observations is zero
against a linear regression alternative. We further consider the conditions under which the conditional
likelihood function under the alternative hypothesis can be decomposed as a vine PCC, and as such,
choose an appropriate vine model. These results are later generalized to test whether the coefficients of a
possibly nonlinear median regression function have a given value against an alternative nonlinear median

regression.



3.1 Testing orthogonality hypothesis in linear predictive regressions

Consider the problem of testing the null hypothesis of unpredictability (3) against the alternative (4),
using the test statistic (7) and given the assumptions (1) and (2). As it was shown in Section 2, under

the alternative hypothesis the conditional likelihood function can be expressed as

T

Li(U(T),B1,X) = HP [s(ye) = s¢ | 841 =841, X] . (10)
=1

Let s(y;) be a scalar element of S;_;, with S}il = S;_1\s(y;) such that
Sy = {s(y1)5(y2) -+, s(yjm1)s s@i1) L s(wer)}

and s(y) ¢ S;_;. By choosing a single element of S;_;, say s(y;), we would have

Pls(ys) = s, 5(yj) = 55 | S71 = 8,71, X]
Pls(y;) = s; | S0 =871, X]

P [S(Z/t) =8| S = §t717X] =

kt=0,1k;=0,1 (11)
{Plst) < 50— kes(yy) < 5= by |87, =571, X]}

[Pls(y;) = s; 187, =871, X],

where the bivariate conditional probability in (11) can be expressed in terms of copulas as follows

Pls(y) = st | S4_1 =841, X]| = Z Z (_1)kt+kj{

kt=0,1 k;=0,1

| (st —hy | sV (s — ki | sV
oty (Fs@t)s}%(‘st bl s XD Fy gy (55 = i | §H’X>> }
/Pls(ys) = 55 18ty = 512y, X].

(12)

Further, let S}l_{ = S}Zl\s(yi), such that s(y;) is a scalar element of 57}11- Then the arguments Fs(yt)ls\j
D1



and F in copula expression (12) can be presented by the general form

s(y)18y

;g —_— . \i7j S
Fs(yt)|5(yi),S>i’{ (s¢ — ke | S”L’Et—le) =

. . \Zv] . \17] o
{Cs(yt),s(yi)IS}“{ <F8(yt)|syi( kt ‘ S¢ 15 )7F8(yi)|5,>i’]( (yl) ‘ S le)>

o o \w o \4,J
Cs(yt)7s(yi)|s1>1,] <Fs(yt)|s\%3 (St kt ’ St 1» )7 FS(%)IS,}’,’{( ( ) 1 | St 17X)>}

-1

(13)

/Pls(yi) = i | Sy = 5%, X].

Thus, decomposition (12), and in turn (13) can be applied recursively to the elements of the conditional
likelihood function (5), such that it is expressed in terms of bivariate copulas. Let S,_; = {s(y1), -, s(y—1)}
be the variables that s(y;) for t = 2,--- T is conditioned on. We follow Joe (2014), by letting o, ; =
{o(1,t), -+ ,0(t—1,t)} be a permutation of S,_;, such that s(y;) is paired sequentially first with o(1,¢),
then o(2,t) and finally o (¢t — 1,t), where in the " step (2 <r <t — 1), o(r,t) is paired to ¢ conditional
on o(1,t),---,0(r — 1,t). For n < 3 (i.e. t = 2,3) there are only three possible permutations with
o, = {s(y1)} for t = 2, and gy = {s(y1),s(y2)}, as well as gy = (s(y2),s(y1)) for t = 3 respectively.
Therefore, under assumptions (1) and (2), and with 7" < 3, let Hy and H; be defined by (3) - (4), then

the Neyman-Pearson type test-statistic based on the signs (s(y1), -, s(yr))’ can be expressed as

St7

SLy(B1) =InP[s(y1) = s1 | X] +ZlnAst A Ctt 1]t—2
=2
d 1
B Zlnp[s(yt—l) =st-1 | Sy =82, X] - Tln{Q} )
=2

fort =2,---,T, where

Stl k+k
AtA CChmapa= Y, Y (F)RTR

k¢=0,1 k;_1=0,1

< (Cotumrstu s, (Futis, (st = ki -2 X0 Fugy s,y (511 — kit | 5120, X)) )

and such that

InP[s(y1) = s1 ]Sy =80, X] = s(yl)ln{P[y1 20| X] } +InPly; <0 X].

Ply; < 0] X]

For T' > 3, the permutations g,_; are dependent on the choice of the permutations at stages 3, - - - ,t—1.
Therefore, an issue that requires considerable attention is whether there exists a decomposition such as

the one considered in the earlier example for T > 3. Furthermore, the conditional likelihood function

10



expressed in terms of bivariate copulas by recursively using (12) and (13), assumes that a single copula is

specified for each conditional bivariate distribution F in decomposition (10) over all possible

s(ye),s(y;)1S,”

SV . This implies that the copula is unique for the Carte51an product of the ranges of conditional

values of S, ;

CDFs F Y and F s(y)ISY . Therefore, the decomposition must be such that each conditional bivariate
Yj

distribution in sald vine has a Constant conditional copula [see Panagiotelis et al. (2012)]. For a constant

conditional copula to exist, the following conditions outlined by Panagiotelis et al. (2012) must be satisfied.

Definition 1 (Existence of constant conditional copula) Consider the conditional bivariate distribution

function F We say that a copula C = C is constant over all possible values of

, syl s(ye).s(y)] S,
Sy if

S (1) Cap—m, bi—n) > 0, VE, 1€ {1,2} x {1,2},

m=0,1 n=0,1
where ag < a1 < ag and by < by < by, are the distinct points corresponding to the ranges of the conditional

Bernoulli CDFs F and F respectively, such that ag = by = 0 and ag = bs = 1, and where

syl Sy, 5|5,
further, the following constraints are satisfied:

, . ) = \j \j
o) sy, <as(yt)|5>]1’bs(yj)st\]1> = Pls(yr) < st,8(y5) <51 571 = 871, X],
Catanstwls?, <1’bs<yj)|skil> = Vst Conswis, <“s(yt>|skil’1> = Cauisy

with = Pls(y) < 51|87, =571, X] and b = Pls(y;) <551 87, = 87, X].

s(ye)SY s(y)IS)

To satisfy the above conditions, the vine decomposition must be such that the strength of the
dependence of the conditional bivariate distribution does not vary much across different values of the
conditioning set [see Panagiotelis et al. (2012)]. As we are dealing with time-series data, the D-vine
decomposition yields a constant dependence structure over different values of St\ 1, and is thus, the most
appropriate and intuitive choice for the decomposition of the conditional likelihood function (10).

The D-vine PCC (figure 1) is constructed by 7' — 1 trees, say D = {71, -+ ,Tr—1}, comprised of
the edges &£(D) = &(Th) U -+ U &(Tr—1), where £(T;) refers to the edges of the tree 7;. In the first
tree Th, the marginals F(sy | X),F(s2 | X),---,F(sp | X), are arranged as nodes in consecutive
order, say N(71) := {1,2,---,T — 1,T}, where the nodes are of degree two, meaning that no more
than two edges is connected to each node. The corresponding edges join the adjacent nodes, such that
&(h):={12,23,--- ,(T'—1,T)}. Next, the edges of the first tree £(71) become the nodes of Tz, a process
which is completed in a recursive manner, such that N(7;+1) = £(7;), with the edges of each tree joining

the adjacent nodes, and with the mutual elements between the nodes becoming the conditioning set.

11



Note: D-vine for a sample size T consists of 7" — 1 trees.

Figure 1: D-vine PCC for the T-variate case
12 T-1,T
1 2 feeeee-- T-1
1312
12 23 - T-1,T
LT[ 8,
1,T—1|S\j_ 2,T|S\j+

Ti

T2

Tr—1

The first tree consists of the conditional

marginals ordered consecutively as nodes, with the edges connecting the adjacent nodes, and with the

elements shared by the two nodes going in the conditioning set. The edges of each tree 7; become the

nodes of the tree 7;11. In this figure, S\;_ and S, correspond to the elements S\;_ := {2,3,---, T -2}

and S\;, :={3,---,T — 1} respectively, with S,; :={2,3,--- , T — 1}.

12



To express the conditional likelihood function (10) as a D-vine, we begin by calculating the conditional
marginals Fi,--- , Fp, where F; ~ Bernoulli(p;), for t = 1,---,T, with conditional CDFs that are

expressed as (9). Therefore, under assumptions (1) and (2), we have

0, for s; <0
Fi(se | X)=9q 1—-Plgg > —pay 1| X], for 0<s;<1 , t=1,---,T. (14)
1, for s >1

Once the marginals are obtained, the next step consists of evaluating the copulas in the
first tree - i.e. Ci2(F1, F3), -+ ,Cr_110(Fr—1, Fr), corresponding to the edges &(71)). In
the second tree, the copulas Cizpp(Fij2, F32), -+, Cr—oryr—1(Fr—ajr—1, Frir—1) are evaluated, then
Chajes(Fipass Faps), - Cr—srir—2 11 (Fr—3r—27—1, Frjr—27—1) in the third tree, and so on.

In the case of continuous variables, say {s*(y;) € R,t = 1,--- ,T}, the construction of the D-vine
involves an iterative copula evaluation process for the trees 7y, --- , Tr—1. This leads to T'(T'—1)/2 copula
evaluations, which correspond to one copula evaluation for each edge [see Appendix]|. On the other hand,
for discrete variables, the conditional p.m.fs are expressed as in (12), which requires the evaluation of the
following four copulas

CoatsFiw B Coana iy Fig):

CoansFig B CoanaFing Fing):
where FtT\j = Pls(y) < st | St\zl = §>ZI,X] and Ft|_\j = Pls(ys) < sy — 1| 57}11 = §>ZI,X]. Henceforth,
4 x T(T — 1)/2 bivariate copulas need to be evaluated in the case of discrete data.

Let us express the conditional joint p.m.f of the signs as follows

T
Pils(y1) = s1 | X] x HPt|1:t—1[3(yt) = st | s(y1) =51, , 8(Ye—1) = 811, X, (15)
t=2

where following the results by Stoeber et al. (2013), if the D-vine is expressed as a vine-array A =

(o1t)1<i<t<T, where [ = 2,--- T — 1 is the row with tree 7;, and column ¢ has the permutation g, _; =

13



(o(1,t),--- ,0(t — 1,t)) of the previously added variables, such that

-— 12 23 34 T-1,T ] _1 1 2 3 T—l_
~ 13]2 243 T-2,T|T-1 2 1 2 ... T-2
, A=
—  LT-1]Sy.  2T|Sy, T-2 1 2
- LTS, T-1 1
— T
then
2
Pre—als(ye) = se | s(y1) = s1: 8(ye—1) = se-1, X] = { 11 Caut,|au,..7at_1,t} X Coppt X Pyls(ye) = s¢ | X,
I=t—1 (16)

where following Joe (2014), the copula densities in expression (16) are calculated by

++ (gt ot -+ (p— ot +— (p+ — (-
s = eats i Folg) = gl Pag Bihe) = Coina i o) + CoapaPons Fing) =y
N = A . A . ,
Paglis(on) = 0| 8t%1 =571, XPls(y) = 55 1 87 = 8,71, X]
which leads to the following proposition.
Proposition 1 Let A = (01t)1<i<t<7 be a D-vine array for the signs s(y1),- -+, s(yr). Under assumptions

(1) and (2), let Hy and Hy be defined by (3) - (4),

T 2 T T
SLy(B1) = Z Z P Zln Coyyt + Z s(yr)ar(B1) > e1(Br),

t=2|=t—1 t=2 t=1

where

L [1-Pfe < Bz | X]
at(B1) = ln{ Pyles < —B'xi_1 | X] }’

and suppose the constant c1(B1) satisfies P [SLy(B1) > c1(81)] = a under Hy, with 0 < o < 1. Then the

test that rejects Hy when
SLy(B1) > c1(B1) (18)

s most powerful for testing Hy against Hy among level-a tests based on the signs (s(yl), e ,s(yT))/.

Under the null hypothesis, the signs s(y1),- -, s(yr) are i.i.d. according to Bernoulli Bi(1,0.5), with
the distribution of SLp(31) only depending on the weights a;(31), without the presence of any nuisance
parameters. Assumption (2) implies that tests based on SLp(81), such as the test given by (27), are

distribution-free and robust against heteroskedasticity of unknown form. On the other hand, under the
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alternative hypothesis, the power function of the test depends on the form of the distribution of ;. A
special case is where ¢1,--- ,er are independently distributed according to N(0, 1), which leads to the

optimal test statistic assuming the following form

T 2 T T
SLr(B1) =Y > WMeoypjon o, + > Meoa+ > sy)a(B) > c1(Br),

t=2 [=t—1 t=2 t=1

where

ar(B1) = In { o(B'zi1) } 7

1-— CI)(B’wt_l)
where ®(.) is the standard normal distribution function. The distribution of SLy(8;) can be simulated
under the null hypothesis with sufficient number of replications, and the critical values can be obtained

to any degree of precision.

3.2 Testing general full coefficient hypothesis in nonlinear predictive regressions

We now consider the nonlinear predictive regression model
yt:f(mt—17/3)+€t7 t:l, 7T7 (19)

where x;_1 is a (k+1)x 1 vector of stochastic explanatory variables, such that ;1 = [1, 2141, , Tk—1]',

f(+) is a scalar function, 8 € R*+1 is an unknown vector of parameters and
e | X ~ F(. ] X)

where as before Fy(. | X) is a distribution function and X = [z(,--- , x| is an T x (k + 1) matrix.

Suppose that the error process {e;,t = 1,2,---} is a strict conditional mediangale, such that

1
P[6t>0|€t71,X]:P[€t<0|€t71,X]:§, (20)

with

eo ={0}, er—1={e1, - ,e01}, for t>2

and where (20) entails that £, | X has no mass at zero, i.e. Ple; =0 | X]=0 for all . We do not require
that the parameter vector 3 be identified.

We consider the problem of testing the null hypothesis

H(Bo) : B = PBo, (21)
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against the alternative hypothesis

H(B1) : B = B, (22)

We construct a test statistic for testing H (/) against H(f;1) in a similar manner to Section 3.1, by

transforming model (19) to

gt:g(wt717ﬁ5ﬂ0)+8t7 tzlv aT

where §: = yi — f(2i-1,80) and g(xi—1,8,80) = f(xi-1,8) — f(xi-1,B0). Notice that testing H(Bo)
against H (1) is equivalent to testing

Hy:g(xi-1,B8,80) =0, for t=1,---,T
where 0 is a (k + 1) x 1 zero vector, against the alternative
Ha:g(xe-1,8,B0) = f(®e-1,61) — f(z1-1,80), for t=1,.-- T
For U(T) = (s(i1),--- ,s(j7))’, where for 1 <t < T

177’fgt20
0,if g+ <0

s(7e) =

As before, the conditional joint p.m.f of the process of signs is expressed as

Pi[s(91) = 81| X] x HPt|1t 1[s(G) = 3¢ | s(g1) = 81, -+, 8(Ge—1) = S¢—1, X]. (23)
Furthermore, the D-vine-array A = (Gu)1<i<t<T, is such that { = 2,--- T — 1 is the row with tree 7T,
and column ¢ has the permutation &, | = (1¢,- -+ ,d¢—1,¢) of the previously added variables. Then

2
Pt|1:t—1[3(gt) = St ‘ 8(:1]1) =81, ,S(ﬂt_1> = gt—hX] = { H Ct}ltt7|51t7'“75t—1,t}Xc&lttxpt[s(gt) =5 ’ X]’
I=t—1

(24)

which leads to the following corollary.

Corollary 1 Let A = (Gu)1<i<t<T be a D-vine array for the signs s(g1), - ,s(yr). Under assumptions

(19) and (2), let H(Bo) and H(B1) be defined by (21) - (22),

T2 T T
SNr(Bo | B1) =D Y Mo tformdrore + D Mo+ Y sy — flxi-1,80))a(Bo | B1) > e1(Bo, Br).
t=2 t=1

t=2 [=t—1
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where

pi[xi—1, Bo, B1 | X]
[mtflvﬂ(%ﬁl |X]

atwowl):m{l;t } pilzer, Bos By | X] = Piler < fl@i, Bo)— (@i, B1) | X]

and suppose the constant c¢1(Bo,31) satisfies the constraint P[SNp(Bo | B1) > c1(Bo, B1)] = « under
H(Bo), with 0 < a < 1. Then the test that rejects H(Bo) when

SNt (Bo | B1) > c1(Bo, Br) (25)

is most powerful for testing H(By) against H(B1) among level-a tests based on the signs (s(ﬂl), e ,s(ng))/.

Consider a linear function f(x;—1,8) = B'@;—1, and assume that under the alternative hypothesis e;
fort =1,---,T follows a standard normal distribution (i.e. &, ~ N(0,1)). Then the statistic for testing

H(By) against the alternative H((31) is given by

T 2 T T
SNr(Bo [B1)=>_ ) M b i dors T D g+ > sy — Bomi-1)6(Bo | Br) > c1(Bo, Br),
t=2 t=1

t=2 [=t—1

where

®((B1 — Bo) xi—1) }
— (81— Bo)xi-1) )’

such that ®(.) is the standard normal distribution function. As in Section 3, the distribution of SNz(3y |

at(Bo | B1) = 111{1

B1) can be simulated under the null hypothesis with sufficient number of replications and the relevant

critical values can be obtained to any degree of precision.

4 Estimation

In this Section, we first consider the issue of estimating the bivariate copulas in the D-vine decomposition
and suggest a sequential estimation strategy for the parameters of the copulas. We then turn our attention
to the problem of selecting a class of parametric bivariate copulas. The choice of the latter has an

important implication on introducing dependence to the vector of signs.

4.1 Sequential estimation of the D-vine

The calculation of the test statistics in Section 3 requires four bivariate copula evaluations at 7'(T'—1)/2
distinct points, leading to a total of 27(T" — 1) copula evaluations. The estimation of the D-vine is often
facilitated with the maximum likelihood (MLE hereafter). However, since the latter requires optimization

with respect to at least 27'(T — 1) copula parameters, sequential estimation procedures are favored
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for faster computation times, with the caveat that the increased speed comes at the cost of efficiency.
Furthermore, the sequential estimates may be provided as starting points for the simultaneous numerical
optimization using MLE [see Czado et al. (2012), Haff (2012) and Dissmann et al. (2013) among others].
We assume that the copulas are specified parametrically, given by an appropriate parameter (vector).
More specifically, let 8; = ((9'17/,€7 cee lf—hk)l be the set of all the parameters to be estimated for tree 7;,
l=1,---,T — 1 of the D-vine, with £ = [ — 1 conditioning variables. Therefore, § = (87, --,07._,)" is
the entire set of the parameters that need to be estimated for the D-vine decomposition. To estimate the
parameter vector 6, we follow a sequential estimation strategy proposed by Czado et al. (2012), whereby
first, the parameters of the unconditional bivariate copulas are estimated. These parameters are then
utilized as means of estimating the parameters of bivariate copulas with a single conditioning variable.
The latter are then used to estimate the pair-copulas with two conditioning variables, and so on. This
bivariate copula estimation approach is continued sequentially until all parameters are estimated.

In the first step, the marginals are obtained by computing the conditional Bernoulli CDFs (14) using
an arbitrary distribution, such as the standard normal distribution considered in Section 3. The second
step of the process involves estimating the parameters of the unconditional copula, by fixing the marginals
with their aforementioned estimates and maximizing the bivariate likelihood corresponding to each copula

~

in each tree 7] to obtain 8, = (é/u;v e 79%—1,19 forl=1,---,T—1and k =1—1. As all the variables

are discrete, the log-likelihood function, say, for the unconditional copula Cy ;41 for t =1,--- ;T —1 for
the signs (s(vit), s(Yit+1)), @ =1,--- ,n— 1 is expressed as
T—1
L(fo) = Y log > ()Y Crn (FBsi | X3 B), P (53 | X3 B1):000)
i=1 {ar,a2}e{—+}?

The estimate of the copula parameter, «%0 fort =1,---,T — 1, is then obtained as follows
9}70 = argmax L(0:0),
()

which under regularity conditions solves

OL(0t) —0
0040 '

Let us illustrate this process with an example: once the marginals are obtained, the next step involves
estimating the parameters 0; o for t =1,--- ,T — 1 of the unconditional copulas. Next, we are interested

in estimating 0; 1 for t =1,--- ,T — 2. Define
Uglpy1 = Fijern (St | st41, X 9t,0> ,
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and

Oppaltr1 = Fryopirt <3t+2 | st41, X 9t+1,o) :

for t = 1,---,T — 2. The data d;4, and ;494 is then used to estimate the parameters ;1 for ¢ =
1,---,T —2, denoted by ét,l. This procedure is repeated sequentially until all parameters are estimated.
Haff et al. (2010) show that under regularity conditions, the sequential estimates are asymptotically
normal; however, as noted earlier their asymptotic covariance is “intractable” and the faster computation
time comes at the cost of efficiency. Therefore, the sequential estimates can be utilized as the starting
values of the high-dimensional MLE.

Another approach for estimating one-parameter pair-copulas in the sequential estimation procedure
for copula families with a known relationship to Kendall’s 7 consists of inverting the empirical Kendall’s
T based on, say, 4y and Uy for t = 1,--- T — 1 for the edges of the first tree. However, we provide
a caveat that the Kendall’s 7 of discrete data does not correspond to the Kendall’s 7 of the bivariate
copulas [see Denuit and Lambert (2005)]. Denuit and Lambert (2005) show that by continuous extension
of the discrete variables with a perturbation with values in [0, 1], the continuous features of Kendall’s 7

are adaptable to discrete data. In other words

7(s™(Yt), 8" (Ye41)) = 4/ o2 Ctipr (U, Gpq1) dC 4y (U, Gpgr) — 1

fort=1,--- ., T —1, such that @; = F (s: | X;Bl),
s (ye) = s(y) +U — 1
where U is a continuous random variable in [0,1]. A natural choice for U is the uniform distribution.

4.2 Selection of the copula family

Many different classes of parametric bivariate copulas have extensively been studied and reviewed by
Joe (2014). These include the Archimedean, elliptical, extreme value or max-id copula families that can
specify the dependence structure of the vector of signs. As the dependence is introduced by the copula
family, the type and the degree of the dependence between the signs depends on the choice of the copula.
The literature surrounding the goodness-of-fit of copulas is extensive and has been analyzed by Genest
et al. (2006), Genest et al. (2009), and Berg (2009), among many others. Genest et al. (2009) categorize
goodness-of-fit tests into three broad categories: procedures for testing particular dependence structures

such as Gaussian or Clayton family; procedures that may be used for any classes of copulas, but require a

19



strategic choice for their implementation; and finally, the so-called “blanket tests”that apply to all classes
of copulas and require no strategic choice for their use. A simple procedure proposed by Joe (1997)
involves specifying the Akaike information critetion (AIC) to different copulas and using it as a copula
selection criterion, which is particularly attractive as it allows for the automation of the copula selection
process [see. Czado et al. (2012)]. The AIC specified to the copulas of, say, the first tree of the D-vine,

can be expressed as follows

¢
AIC = =2 Z 10g ctp41 (Wi g, Wigr1501 1) + 21
i=1

fort=1,.---,T—1and k=1,---,T — 1, and where [ is the number of parameters 0 . Panagiotelis
et al. (2012) suggest that while dependence structures such as tail dependence are weak in discrete data,
the choice of the copulas could still have a significant effect on the joint pmf of the signs. They considered
Gaussian, Clayton and Gumbel copulas in constructing the D-vines for Bernoulli margins by keeping the
marginal probabilities and dependence constant, and have found that in the case where the probabilities
of zero marginals and joint probabilities in the data is high, preference goes to the use of the Gumbel
copula over the other two alternatives.

Within the context of our work, the mediangale assumption (2) implies that the signs s(y1), -+, s(yr)
conditional on X, and in turn #i,---,ur exhibit serial nonlinear dependence. Thus, the issue with
specifying a copula-based model for the signs is that the distribution of the signs must imply an identity
correlation matrix, where independence is only sufficient for uncorrelatedness. The literature generally
deals with this issue by capturing the serial nonlinear dependence by imposing the identity correlation
matrix on a multivariate Student’s ¢t distribution. Henceforth, we consider the “jointly symmetric”
copulas proposed by Oh and Patton (2016), where the latter can be constructed with any given (possibly
asymmetric) copula family. In addition, when they are combined with symmetric marginals, they ensure

an identity correlation matrix. A “jointly symmetric” copula is defined as follows

Definition 2 The n dimensional copula C7°, is jointly symmetric:

2 2
1
C7 (uy, - - JUp) = Z Z (—DEC(ay, - i, i),

k1=0 kn=0

1, ki =0

where R = Z Wk =2}, and ;= { ki=1
i=1

1-— U, k‘l =2
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The general idea is that the average of mirror image rotations of a possibly asymmetric copula along each
axis generates a jointly symmetric copula [see Oh and Patton (2016)]. For instance, the marginals can
be assumed to possess standard normal distributions, while the nonlinear dependency is modeled using
jointly symmetric copulas.

Therefore, using the jointly symmetric copula family, the bivariate copulas can be evaluated by

considering

) L 22
c’s <¢t(5t | X;81), bra1(si41 | X;B1) ) 1 DY (D)FC(eilsi | X3 Br), brasenr | X;61))
k1=0 ko=0
1, ki =0
where R = Z 1{k; =2}, and a; = oi(), ki=1, Vie{tt+1}.

1—¢i(.), ki=2

fort=1,---,7T—1.

4.3 Truncated D-vines

Following Joe (2014), we refer to a D-vine as a p-truncated D-vine, if the copulas in the trees

Tp+1,- -, Tr are C*, where by definition
CH(ur, - up) = [Jwe, with (Uy,--,Up) ~U(0,1),

implying U; L. Uy L --- 1L Up. The POS-based tests constructed using the Markov assumption of order
one can be regarded as a special case of the PCC-POS based tests, whereby the former can be constructed
by a 1-truncated D-vine, which only depends on Cig,Ca3,--- ,Cr—_1 7, or rather Ci2,Cs 53, ,, CoppT

using a vine array representation, given the following array

- 12 23 34 T-1,T 112 3 e T—1
— 132+ 243+ T—-2,T|T—-1" 2 1+ 2+t e T -2+
, A=
- LT-1[Sy_ 2,T | S, T-2 1+ 2+
- LTSy T—-1 1+
- T
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Similarly, a 2-truncated D-vine, depends on the copulas Ci2, Cag, - -, Cp—1,7 and Cy32, Cayj3, -+ , Cr_2 771

or Cy,tfort=2---,T and C, for t = 3,--- ,T using the vine array representation. Therefore, for

attloie

a p-truncated D-vine, (24) is modified to

Pyia—1[s(@e) = 3¢ [ s(n) = 81, 8(Ge—1) = 81-1, X] = Pyup[s(@e) = 8¢ | s(g1) = 81, , 8(Tp) = 3p, X]

2
= H C&ltty‘&ltyu'y&t—l,t X C&ltt X ’Pt[s(gt) = gt ‘ X]?
I=pA(t—1)
(26)
fort—12>p.
Corollary 2 Let A = (Gu)1<i<t<T be a D-vine array for the signs s(91),--- ,s(gr), where the signs

{s(9)}12 follow a Markov process of order p. Under assumptions (19) and (2), let H(Bo) and H(B1) be
defined by (21) - (22),

SNt (Bo | B1) Z Z e A TR A Zlncaltt + Z s(ye — f(@i-1,B0))a(Bo | Br) > c1(Bo. Br),

t=2 |=pA(t—1)

where

dt(ﬁo | 51) _ ln{l _pt[wt—la:@()aﬁl ’ X]
Dt

[mt—l Bo. B1 ’ X] } ) pt[wt—laﬁ()vﬁl | X] = R&[Et < f(wt_l,ﬂo)—f(mt_hﬁl) ‘ X]

and suppose the constant ci(Bo,B1) satisfies the constraint P [SNr(Bo | B1) > c1(Bo,B1)] = « under
H(By), with 0 < o < 1. Then the test that rejects H(By) when

SNt (Bo | B1) > c1(Bo, Br) (27)

is most powerful for testing H(Bo) against H(B1) among level-a tests based on the signs (s(§1), - - - ,s(g]T))/.

5 Choice of the optimal alternative hypothesis

In this Section, we follow Dufour and Taamouti (2010) by first showing the analytical derivation of the
power envelope function of the PCC-POS-based tests. We then suggest using simulations as means of
approximating the said function, by showing the difficulty of inverting the latter to find the optimal
alternative. Thereafter, we propose an adaptive approach based on the split-sample technique to choose

an alternative which has a power function close to that of the power envelope.
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5.1 Power envelope of PCC-POS tests

Point-optimal tests trace out the power envelope (i.e. the maximum attainable power) for any given
testing problem [see King (1987)]. However, in practice the alternative hypothesis 3; is unknown and
a problem consists of finding an approximation for it, such that the power function is maximized and
is close to that of the power envelope. Following Dufour and Taamouti (2010) and Dufour and Jasiak
(2001), we propose an adaptive approach based on the split-sample technique to choose an alternative
(1 that yields the greatest power function and makes size control easier [see Dufour and Jasiak (2001)
and Dufour and Taamouti (2010) for an overview]. We follow Dufour and Taamouti (2010) by presenting
the analytical derivation of the power envelope of the PCC-POS tests for predictive regressions, which
can be purposed as a benchmark for comparing the power functions of the PCC-POS tests for different
sample splits.

We have shown in Section 3.2 that the PCC-POS tests are a function of 1. In other words,

T

2

1_p T 17507/61 X

SNT BO | ’81 Z Z lncaltt\alt Ot — 1t+§ :lnca'ltt+§ In { wt = 8o, 3 ’)’q ]}S(yt_f($t1n@0))-
t=2 l=t—1 pt t—1, 0, P1

which in turn implies that its power function, say II(8g, 31), is also a function of 8;

I1(Bo, B1) = P[SNr(Bo | B1) > c1(Bo, B1) | H(B1)]

where ¢1(8y,31) is the smallest constant that satisfies P[SNp(Bo | B1) > c1(Bo,B1) | H(Bo)] < «a,
and where « is an arbitrary significance level. Theorem 1 provides the theoretical results for the power

function of the PCC-POS tests.

Theorem 1 Under assumption (2) and and given model (19), and further under the condition that
s(91),- -+ ,s(yr) conditional on X follow a Regularity Markov Type process (RMT hereafter), the power
function of SN7(Bo | B1) is given by

(8o, B1) = P[SN1(Bo | B1) > c1(Bo,B1) | X] =

Ly 1/°° Im{exp(iuci(Bo, B1))$snr (W)}
2 7w U

Vu € R, i = /—1, and with Im{z} denoting the imaginary part of the complex number z. ¢gn,(u) is
given by

= (oo (o o ST )] )

t=1
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2
where R1g =0, Rip1 = Y, Incs,, 15y,
I=t—1

A= (Guh<i<t<T, 1 = 2,---, T — 1 is the row with tree T;, and column t has the permutation &, | =
(G1t, -+ ,G1—1¢) of the previously added variables, p;[xi—1, B0, B1 | X] = Piler < f(xi—1,B0)— f(xi—1,51) |
X], 8, 1 = s(yi—1 — fl@i—2,60)), - ,s(y1 — f(xo,B0)). Finally, c1(Bo,B1) is the smallest constant that
satisfies P[SNt(Bo | B1) > c1(Bo, B1) | H(Bo)] < «, where a is an arbitrary significance level.

+1Incs¢ fort = 2,--- T, such that for D-vine-array

©0t—1,t

Under the assumption that the signs follow an RMT-process, p;(u) can be estimated using the results
from Theorem 2 of Heinrich (1982). Given that point-optimal tests are optimal at a specific point in
the alternative parameter space, the power envelope of the PCC-POS tests, say I1(31), is obtained for
values of 3, such that {8 : 3 = B1,Y0: € R(k“)}. Finding values of 81 for a PCC-POS test at level
«, with a power function that is close to the power envelope can be achieved by inverting the power
envelope function. However, in a much simpler case of POS tests for i.n.i.d data, Dufour and Taamouti
(2010) show that the inversion of the power function is not a straightforward task and obtaining an exact
solution is not feasible. Therefore, simulations are used as means of approximating the power envelope

function and finding the optimal alternative for the PCC-POS test.

5.2 Split-sample technique for choosing the optimal alternative

As noted earlier, the power function of the PCC-POS test statistic depends on the alternative 31,
which in practice is unknown and needs to be approximated. To make size control easier and to choose
an approximation to 31 such that the power function of the test statistic is close to that of the power
envelope, we follow Dufour and Taamouti (2010) by proposing an adaptive approach based on the split-
sample technique for choosing the alternative. For an extensive review of adaptive statistical methods,
we refer the reader to O’Gorman (2004). Furthermore, the application of the split-sample technique in
parametric settings can be studied by consulting Dufour and Taamouti (2003) and Dufour et al. (2008).

The split-sample technique involves splitting a sample of size T into two independent subsamples, say
Ty and T5, such that T'= T} +T5. The first subsample is then used to estimate the alternative 31, while
the other is purposed for computing the PCC-POS test statistic. Assuming that f(x:;—1,8) = x;_,3, the

alternative 3; can be estimated using OLS

A~

Ba) = (Xél)X(l))ilX&)y(l)-

We provide a caveat that the OLS estimator is sensitive to extreme outliers, which motivates the use

of robust estimators [see. Maronna et al. (2019) for a review of robust estimators|. Using B(l) and the
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Figure 2: Power comparisons: different split-samples. Normal error distributions with different values of

pin (33) and 0 = 0.9 in (32)

Normal distribution,  6=0.9, p=0 Normal distribution, ~ 6=0.9, p=0.9
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Note: These figures compare the power envelope the PCC-POS test statistic using different split-samples:
10%, 30%, 50%, 70%. “PE”refers to the power envelope of the PCC-POS test.

observations in the second independent subsample, we compute the test-statistic as follows

T 2 T
SN7(Bo | /8(1)) = Z Z hlc&ltﬂ&(Tl-&-l)t’”"&tfl,t + Z th&(TlH)tH_

t_T1+2 l=t—1 t=T1+2

1 = pt[zi—1,Bo, B |X]} .
In sty — ‘
t;H { pe[xi—1, Bo, By | X] (e — x4—180)

where for t = 11 + 2,--- ,T and D-vine-array A= (Guh<i<t<n, L =T1+1,---,T — 1 is the row with
tree 7;, and column ¢ has the permutation ¢, 1 = (G, 1y¢, - ,0¢—1+) of the previously added variables,
i1, Bo, By | X1 = Piler < a1 (Bo— 1) | X, and S,y = s(yr—1 — a}_oB0), -+, 5(yr, 12 — @y, 1 B0)-
The choices for the subsamples 77 and 75 can be arbitrary. However, our simulations show that the
proportion of the observations retained for estimating the alternative and in turn for computing the
PCC-POS test statistic has an impact on the power of the test. We find that the power function of the
split-sample PCC-POS test (SS-PCC-POS test hereafter) is closest to that of the power envelope, when
a relatively small number of observations is retained for estimating the alternative, with the rest used for
computing the test statistic - findings that are in line with Dufour and Taamouti (2010). Specifically, by
considering all the DGPs in our simulations study, we find that the subsamples 77 and T5 must in turn

contain roughly 10% and 90% of the observations in the entire sample respectively.
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Figure 3: Power comparisons: different split-samples. Cauchy error distributions with different values of

pin (33) and 0 = 0.9 in (32)
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Note: These figures compare the power envelope the PCC-POS test statistic using different split-samples:
10%, 30%, 50%, 70%. “PE”refers to the power envelope of the PCC-POS test.

Figure 4: Power comparisons: different split-samples. Student’s ¢ error distributions with 2 degrees of

freedom [i.e ¢(2)] with different values of p in (33) and 6 = 0.9 in (32)
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Note: These figures compare the power envelope the PCC-POS test statistic using different split-samples:
10%, 30%, 50%, 70%. “PE”refers to the power envelope of the PCC-POS test.
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Figure 5: Power comparisons: different split-samples. Normal error distributions with break in variance,

with different values of p in (33) and 6§ = 0.9 in (32)
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Note: These figures compare the power envelope the PCC-POS test statistic using different split-samples:

10%, 30%, 50%, 70%. “PE”refers to the power envelope of the PCC-POS test.

6 PCC-POS confidence regions

In this Section, we lay out the theoretical framework for building confidence regions for a vector
(sub-vector) of the unknown parameters 3, say Cg(c), at a given significance level «, using the proposed
PCC-POS tests. Consider model (19) such that f(x:—1,3) = x;_13. Suppose we wish to test the null
hypothesis (21) against the alternative hypothesis (22). Formally, this implies finding all the values of
Bo € R¥ such that

T 2 T T
SN (Bo | B1) = Z Z Incs,t 506010t Zln Co14t + ZS(yt — By —x—1)a(Bo | B1) < c1(Bo, B1)-

t=2 1=t—1 t=2 =1
(28)

where the critical value is given by the smallest constant ¢(B, 31) such that

P[SN7(BolB1) > c(Bo,B1) | B=Po] <«

Thus, the confidence region of the vector of parameters 3 can be defined as follows:

Cp(a) ={Bo : SN7(Bo| B1) < c(Bo, B1)|PISNr(Bo| B1) > ¢(Bo, B1) | B=Bo] < a}.
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Given the confidence region Cg(c), confidence intervals for the components and sub-vectors of vector 3
can be derived using the projection techniques [see Dufour and Taamouti (2010) and Coudin and Dufour
(2009)]. Confidence sets in the form of transformations 7" of 8 € R™, for m < (k+1), say T'(Cg(«)), can

easily be found using these techniques. Since, for any set Cg(a)
BeCgla) = T(B) € T(Ca(a)), (29)

we have

PBeCgla)l>1—a = P[T(B) cT(Cg(a))] 21—« (30)

where

T(Cg(a)) = {6 € R™ : 38 € Ca(), T(B) = 5}

From (29) and (30) , the set T(Cg(«)) is a conservative confidence set for T'(3) with level 1 — . If T'(8)

is a scalar, then we have

Plinf{T'(By), for PBge Cgla)} <T(B) <sup{T(Boy), for Bpe Cgla)}]>1-c.

7 Monte Carlo study

In this Section, we assess the performance of the proposed 10% SS-PCC-POS tests (in terms of size
control and power) by comparing it to other tests that are intended to be robust against non-standard
distributions and heteroskedasticity of unknown form. We consider DGPs under different distributional
assumptions and heteroskedasticities. For each DGP, we further consider different correlation coefficients
between the errors of the predictive regression and the disturbances of the regressors. In the first
subsection, the DGPs are formally introduced, and in the following subsection, the performance of the

proposed 10% SS-PCC-POS tests are compared to that of the other tests considered in our study.

7.1 Simulation setup

We assess the performance of the proposed 10% SS-PCC-POS tests in terms of size and power, by
considering various DGPs with different symmetric and asymmetric distributions and forms of heteroskedasticity.
The DGPs under consideration are supposed to mimic different scenarios that are often encountered in

practical settings. The performance of the 10% SS-PCC-POS tests is compared to that of a few other
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tests, by considering the following linear predictive regression model

Yt = Pri—1+ & (31)
where S is an unknown parameter and

Ty = eﬂl't_l + U (32)

where 0 = 0.9 and

up = pey + w1 — p? (33)

for p = 0,0.1,0.5,0.9 and ¢; and w; are assumed to be independent. The initial value of x is given by:
To = \/% and wy are generated from N (0, 1). The errors &, are i.n.i.d and are categorized by two groups
in our simulation study. In the first group, we consider DGPs where the errors ; possess symmetric and

asymmetric distributions:
1. normal distribution: e, ~ N (0, 1);
2. Cauchy distribution: g; ~ Cauchy;
3. Student’s ¢ distribution with two degrees of freedom: &; ~ t(2);

4. Mixture of Cauchy and normal distributions: e; ~| e’ | —(1 — s;) | €l |, where £f follows Cauchy

distribution, /¥ follows N (0, 1) distribution, and

P(s; =1) = P(s; =0) :%

The second group of DGPs represents different forms of heteroskedasticity:

5. break in variance:

N(0,1) for t # 25

&t~ )
VIOOON(0,1) for t = 25

6. GARCH(1, 1) plus jump variance:

o2(t) = 0.00037 + 0.0888¢?_; + 0.902402(t — 1),

N(0,02(t)) fort+#25
50N (0,02(t)) for t =25

Ep
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We consider the problem of testing the null hypothesis Hy : 8 = 0. Our Monte Carlo simulations compare
the size and power of the 10%-PCC-POS test to those of {-test, t-test based on White (1980) variance-
correction (WT-test hereafter), and the sign-based test proposed by Campbell and Dufour (1995). Due to
computational constraints, we perform only M; = 999 simulations to evaluate the probability distribution
of the 10% SS-PCC-POS test statistic and My = 1,000 iterations for approximating the power functions
of the proposed PCC-POS test and other tests. In all simulations, we consider a sample size of T' = 50.
As the sign-based statistic of Campbell and Dufour (1995) has a discrete distribution, it is not possible

to obtain test with a precise size of 5%; therefore, the size of the test is 5.95% for T' = 50.

7.2 Simulation results

The results of the Monte Carlo study corresponding to DGPs described in Section 7.1 are presented
in figures 6-11. These figures compare the performance of the 10% SS-PCC-POS test in terms of size and
power, to those of the t-test, t-test based on White’s (1980) variance-correction, as well as the sign-based
procedure proposed by Dufour and Taamouti (2010). The results are described in detail below.

First, figure 6 considers the case where the error terms ¢; are normally distributed. At first glance,
we note that all tests control size. Evidently, our test is outperformed by the t-test, as well as the t-test
based on White’s (1980) variance-correction. The former is expected, since for normally distributed error
terms, the {-test is the most powerful test. However, the 10% SS-PCC-POS test outperforms the sign-
based procedure proposed by Campbell and Dufour (1995) [CD (1995) hereafter]. Furthermore, changing
the correlation coefficient p does not seem to lead to visually significant differences in the performance of
the tests.

Second, figure 7 presents the results of the performance of the aforementioned tests, when the errors
g follows Cauchy distribution. It is evident that the 10% SS-PCC-POS test outperforms all other tests.
Moreover, the ¢-test and WT-test do not possess much power for low correlation coefficient (0 and 0.1)
values, p. However, as the correlation between u; and w; increases, the gap between the power functions
narrows significantly.

Third, in figures 8 and 9, we have considered the cases where the errors in turn follow #(2) and mixture
distributions. In the former case of ¢(2) distributed errors, the 10% SS-PCC-POS test outperforms the
rest; however, for almost all correlation coefficients p, the gap between the power functions is rather small,
albeit it is narrowest for p = 0.9. In the case of errors with mixture distribution, our 10% SS-PCC-POS
test is still the most powerful test. On other hand, it is evident that the t-test and WT-test do not
possess much power for small values (0 and 0.1) of correlation coefficient p. However, the power functions

increase and converge to those of the other tests, as the correlation increases.
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An interesting observation is the stark contrast between the power of the 10% SS-PCC-POS test and
the t-test, when the errors follow the Cauchy, ¢(2) and normal distributions respectively. The Cauchy
and t(2) distributions possess heavy tails, in the presence of which the standard error of the regression
coefficients is inflated, which in turn leads to low power when the mean is used as a measure of central
tendency. For instance, the Cauchy distribution has the heaviest tails among the considered DGPs, as a
result of which the t¢-test and WT-test have very low power. By noting that a Student’s ¢ distribution
with v degrees of freedom converges to the Cauchy distribution for » = 1 and to the normal distribution
as v — 0o, it would be interesting to see at which degree of freedom the 10% SS-PCC-POS test is
outperformed by the t-test and WT-tests. Figures 12-15 suggest that for different values of p in (33) the
t-test and WT test outperform the 10% SS-PCC-POS test for v = 4. Interestingly, figure 16 shows that
the tails of the #(2) distribution are substantially heavier than that of the #(4), which may explain the
transition.

Finally, in figures 8 and 9, the errors are normally distributed with different forms of heteroskedasticity.
In the first case [see figure 8|, there is a break in variance, in the presence of which our test outperforms
the other tests. Furthermore, the t-test and WT-test do not possess any power for low correlation (0
and 0.1) values of p. However, with increasing values of the correlation coefficient the power curves of
all test appear to converge. In the other case [see figure 9], the variance follows a GARCH(1,1) model
with a jump in variance. In this case, our test is only outperformed by the CD (1995) test, which has

the greatest power. Nevertheless, the 10% SS-PCC-POS test still outperforms the ¢-test and WT-test.
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Figure 6: Power comparisons: different tests. Normal error distributions with different values of p in (33)

and 0 = 0.9 in (32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-PCC-POS
test] with: (1) the t¢-test; (2) the sign-based test proposed by Campbell and Dufour (1995) [CD (1995)

test]; and (3) the t-test based on White’s (1980) variance correction [WT-test].
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Figure 7: Power comparisons: different tests. Cauchy error distributions with different values of p in (33)

and 6§ = 0.9 in (32)
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test]; and (3) the ¢-test based on White’s (1980) variance correction [WT-test].
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Figure 8: Power comparisons: different tests. Student’s ¢ error distributions with 2 degrees of freedom

[i.e t(2)], with different values of p in (33) and = 0.9 in (32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-PCC-POS

test] with: (1) the t¢-test; (2) the sign-based test proposed by Campbell and Dufour (1995) [CD (1995)

test]; and (3) the t-test based on White’s (1980) variance correction [WT-test].
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Figure 9: Power comparisons: different tests. Mixture error distributions with different values

(33) and 0 = 0.9 in (32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-PCC-POS

test] with: (1) the t¢-test; (2) the sign-based test proposed by Campbell and Dufour (1995) [CD (1995)

test]; and (3) the t-test based on White’s (1980) variance correction [WT-test].
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Figure 10: Power comparisons: different tests. Normal error distributions with break in variance, with

different values of p in (33) and # = 0.9 in (32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-PCC-POS
test] with: (1) the t¢-test; (2) the sign-based test proposed by Campbell and Dufour (1995) [CD (1995)

test]; and (3) the t-test based on White’s (1980) variance correction [WT-test].
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Figure 11: Power comparisons: different tests. Normal error distributions GARCH(1,1) plus jump

invariance, with different values of p in (33) and # = 0.9 in (32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-PCC-POS
test] with: (1) the t¢-test; (2) the sign-based test proposed by Campbell and Dufour (1995) [CD (1995)

test]; and (3) the t-test based on White’s (1980) variance correction [WT-test].
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8 Conclusion

In this paper, we extend the exact point-optimal sign-based procedures proposed by Dufour and
Taamouti (2010) to a predictive regression framework. We showed that by implementing the procedures
for pair copula constructions of discrete data, we can derive exact and distribution-free sign-based
statistics for dependent data in the context of linear and nonlinear predictive regressions, without
imposing any potentially restrictive assumptions. The proposed tests are valid, distribution-free and
robust against heteroskedasticity of unknown form. Furthermore, they may be inverted to produce a
confidence region for the vector (sub-vector) of parameters of the regression model.

We further suggest a sequential estimation strategy for the D-vine PCC and discuss the choice of the
copula family. As the proposed sign statistics depend on the alternative hypothesis, another problem
consists of finding an alternative that controls size and maximizes the power. In line with Dufour and
Taamouti (2010), we find that when 10% of sample is used to estimate the alternative and the rest to
compute the test-statistic, our procedures have the optimal power and are closest to the power envelope.

Finally, we present a Monte Carlo study to assess the performance of the proposed tests in terms of
size control and power, by comparing them to some other tests that are intended to be robust against
heteroskedasticity. We consider a variety of different DGPs and we show that the 10% split-sample
point-optimal sign-test based on pair copula constructions is superior to the ¢-test, Campbell and Dufour

(1995) sign-based test, and the ¢-test based on White (1980) variance correction in most cases.
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9 Appendix

Derivation of the Neyman-Pearson type sign-based statistic for testing the unpredictability

hypothesis for T' < 3.

The likelihood function of sample in terms of signs s(y1), -, s(yr) conditional on X is
T
L(U(T)uﬁvX) = P[S(yl) =81, 75(yT) = ST | X] = HP [S(yt) = St | Stfl = StflaX] )
t=1
for
SO = {®}7 St—l = {S(yl)v T ?S(yt—l)}7 for ¢ > 2,
and

Ps(y1) = s1 ]Sy =89, X] = P[s(y1) = s1 | X],

where each s;, for 1 <t < T, takes two possible values 0 and 1. Given model (1) and assumption (2),
under the null hypothesis of unpredictability, the signs s(e;), for 1 <t < T, are i.i.d conditional on X
according to Bi(1,0.5). Then, the signs s(y:), for 1 <t < T, will also be i.i.d conditional on X with

P[s(yt)zl|X]:P[s(yt):0|X]:%, for t=1,.-- T,

Consequently, under Hy

T T
Lo (U(T),0,X) = [[ Pls(ye) = s | X] = (i)

and under H; we have

T
Ly (U(T), Br, X HP s(ye) = st [ Sp1 =84 17X}
t=1

where now, fort =1,--- , T,

Yt = 5’1%&4 + &¢

The log-likelihood ratio is given by

ln{Lo((UU((TT) P X } Zln{P s(y) = s¢ | Sy =841, }}—Tln{;}.

According to Neyman-Pearson lemma [see e.g. Lehmann (1959), page 65], the best test to test Hy against
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Hy, based on s(y1),- -+ ,s(yr), rejects Hy when

(L (UT).B.X)
SLr(B) ‘1“{ Lo (0(1),0.5) } =

or when

1
Zln{P s(ye) = st | Si_1 =841, ]}chzc—i-Tln(Q),
The critical value, say c; is given by the smallest constant ¢; such that
(Zln{P s(ye) = 8¢ | Si_q = 841, ]} > ]H[)) < a.

We have

In{P[s(y1) = s1 | So = s, X]} = m{P[s(y1) = s1 | X[}

(y1)InPlyy = 0 [ X]+ (1 = s(y1)) In Plyy < 0] X]
:s(yl)ln{m}—i—lnp[yl < 0| X]
(?ﬂ)ln{ﬂ - z giz 1 :Q}JFIHP[& < —Bimi-1 | X],

and for t =2,--- T, with T' < 3 we have

T
Pls(yt) = st,8(yt—1) = st—1 | Sy—9 =849, X]
2( _ = x]=Y"1
L) = o 181y =0, Y] “( Pls(yi1) = si-1 [ 815 = 5,2, X]

Su( ¥ ¥ ek

k¢=0,1 kt_1=0,1

[s(ye) < s¢— ke, s(ye—1) < se—1 — ke—1 | Sp_0 =84 9, X]}

/P[s(yt-1) = st—1 | Sy_o = §t—27X]>

:iln( Y (e

t=2 kt=0,1 kt_1=0,1
x {Cs(yt),s(ytfmst,z (Fs(yt)\st,Q(St = ki | sp_2, X),

Fs(yt—1)|5t,2(st—1 — k1 ‘ §t—27X)> }

[P[s(yt—1) = 541 | Sy_9 = St27X])
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:im{z T (cppte

t=2 k¢=0,1k;_1=0,1

X {Cs(yt)vs(yt—1)|5t72 (FS(yt)\St,g(St — ki | 849, X),

Foty_ )18, (8t-1 — kt—1 | §t,2,X)) }}

T
= I {P[s(ye1) =s1-1] S0 = 5,9, X}
t=2

Each argument Fy(y,ys, , (st —kt | 8,_9, X) and Fy, ), ,(8t—1 —kt—1 | 8,5, X) in the copula expression

Yt—1

above can be evaluated as follows

Fyyys, (5t — ke | 89, X) =
{Cs(yt)’s(yt—2)|st—3(F(St — k|83, X), F(si—2 | 8,3, X))

_Cs(yt),s(yt72)|5t,3 (F(sl‘ — ki | §t733X)7 F(st*Q -1 | §t73>X))} /P[S(yt*Q) = St—2 | Stf?; = 5t—3; X]

and similarly

Fs(yt—l)‘st_g(st_l - kt_l ‘ §t—27X) -
{Cs(yt_Q),s(yt_mst_s(F(St—2 | 843, X), F'(st-1 — kt—1 | 8,5, X))

—Csye_)s(ye-1)IS,_s F (st—2 = 1| 843, X), F(st-1 — k-1 | 5t737X))} [P[s(yt—2) = st-2 | S;_5 = 8;_3, X]

Thus, for T' < 3 the Neyman-Pearson type test statistic based on s(y1),- - , s(yr), can be expressed as

SLp(By) = S(yl)ln{P[a > —Bl@i_1 | X] } +InPley < —Bm1 | X] + Z { S (cpleth

/
Pley < =11 | X] = —0,1 ky_1=0,1

< (Courstur-nise s (Futmis, (st = k| 512X, Fugeoyyis, (st = kot [ 512, X)) }

T
_ Zln {P[s(y1—1) = st—1 | St_2 =849, X]} —nln {;}

t=2

Vine decomposition in the continuous case.
In Section 4, it is shown that the signs s(y1),---,s(yr) may have a continuous extension with a
perturbation in [0, 1] [see Denuit and Lambert (2005)]. This can be achieved by employing a transformation

of the form s*(y;) = s(y;)+U—1fort = 1,--- , T, where a natural choice for U is the uniform distribution.
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Thus, for {s*(y:) € R,t =1,--- , T} consider the continuous equivalent of the conditional probability mass
function (11) - i.e. the conditional density function. Further, by letting S} ; be the continuous extension
of S;_;, the conditional density function may be expressed as

fS*(yt)ﬁ*(yj)\Sfﬁ

= . (34)

s (y;)IS;

Fo s s ()
From the Theorem of Sklar (1959), we know that

PR VI A Y Y
fS*(yt)7S*(yj)|S:yl (Stasj ‘ §t717X) CS*(yt)7S*(yj)|S:\] <Fs*(yt)|s:\J1 (St ‘ St*l’X)’Fs*(ymeYl (S] ‘ §t—l7X)>

—1

X « . * .
fs*(yt)‘stylfs*(yj)lstyl’
(35)
where ¢() is the copula density function. Thus,
\J =c ~Nn | F (st sV X)), F (st sV X ~i, (36
For s ) = oot IS, ( et O 180 XD F gy (57 19021 %) ) s (36)
with
c *\J F *\J (S;fk ‘ Erijla X)7F *\J (S>if ‘ EZpr) =
s*(ye),s*(y)18; 21\ s*(we)S, 2 s*(yi)ISi 21 MY
2 | F C(e* *\],X F (s* *\j,X
s*(yt>7s*<y]->|s;‘\’1< e upisrd G DE L e (85180250
X * | o*\J . [ \J
OF s (st15:20.%) OF e yistM CTEY
(37)

can express (34), and the arguments of the copulas, say, F (sp | §:y1, X)) are obtained using the

()87
expression by Joe (1996), such that

—1

- L o* *\ 7,0 s A

F eV 805*(%),5*(%)@:\” <FL"’*(~%)|SQJ1’I(S'5 | 8427 aX)an*(yi)\SflJlﬂ(sz | 87 ,X)>
s (ol (8t 1871, X) = OF y
s*(y)|Sp %!

(57 153", X)
(38)
Therefore, when the data is continuous, the marginals in the copula expressions of, say, the third tree,

Ft|t+1,t+2 fOI‘ t — 1, M ,T - 2 and Ft+3|t+1,t+2 fOl“ t — 1, M ,T - 3 are Obtained by

OC p1jv2(Fypeg2 (8t | 87125 X)), Frpjeqa(Sis | 8542, X))
OF; 111t12(8541 | 8740, X)

Fyit1,42 = ; (39)
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where Fj 344142 1s obtained in a similar way. =
Proof of Proposition 1.

The likelihood function of the sample in terms of signs s(y1),- -, s(yr) conditional on X is given by
L(U(T),B,X)=Pls(y1) = s1, - ,s(yr) = st | X|

where each s, for 1 <t < T, takes two possible values 0 and 1. Given model (1) and assumption (2),
under the null hypothesis the signs s(g;), for 1 < ¢ < T, are i.i.d conditional on X according to Bi(1,0.5).

Then, the signs s(y;), for 1 <¢ < T, will also be i.i.d conditional on X
1
Pls(y) = 1| X] = Pls(y) = 0| X] = ¢, fort=1,- T

Consequently, under Hy we have

T 1 T
Lo (U(T),0,X) =[] Plsty) = s | X] = <2>
t=1

and under H;7 the likelihood function conditional on X can be expressed as

T
Ly (U(T), 81, X) = Pils(y1) = s1 | X] x [ [ Para—als@e) = s¢ [ s(u1) = s1: s(ye1) = 511, X].
=2

which can further be decomposed using the D-vine array A = (o7;)1<i<t<7 to obtain

T 2
Ly (U(T),31,X) = Pi[s(y1) = s1 | X] x H H Comt,|ore, o1 X Cort X Pe[s(y) = st | X]
t=2[]=t—1

where now for t =1,--- , T,

Yy = ;8/1331%—1 + &

Under assumption (1) and (2), the likelihood function conditional on X, under the alternative hypothesis

can be expressed as

L1 (U(T),B1,X) = (1= Piler < —Biao | X])s(yl) x Pile; < —Bi@o | X100

T 2
/ s(ye)
X H H Copjlore, - ,oi-1,0 X Cort X (1 - Pt[gt < _'Blmt_l ‘ X]) '
t=2[=t—1

X Pt[f-:t < —,8/1$t,1 | X]l_s(yt)
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The log-likelihood ratio is given by

Ly (U(T),B1,X) _ N 1 — Pile1 < —Bizo | X]
hl{Lo )}_ (1)1 {

(U(T),0,X Piler < -8Bz | X] } +In(1-Pifer < —Bizo | X))

1-— Pt[st < —ﬂllmt,1 | X]
1 1 )1
+ Z Z N Cot |o1sy oe—1,0 T Z N Caypt + Z s(u) n{ Piley < —Bixi—1 | X]

t=2|=t—1

+ Zln (1 — Pt[é-:t < —ﬂiaﬁt,1 ’ X]) —TIn <§>

t=2

According to Neyman-Pearson Lemma [see e.g. Lehmann (1959), page 65|, the best test for testing Hy
against Hi, based on s(y1),- -, s(yr), rejects Hy when

Ly (U(T). B, X)
1“{ Lo(U(T),0,X) } =

or when

T

T 2
Ly (U(T),B
n { Lo (U( ,0 Z tz In Copt,|ore, - 00—1, + Z Incgyt

t=21 1 t=2

T 1—Pt5t< ﬂlmt1|X]
Z::Stln{ Piler < =Brzi1 | X] }>Cl(ﬂ1)

The critical value, say ¢1(/1) is given by the smallest constant ¢1(/31) such that

o (DY ) <

m Algorithm for the likelihood function of the signs under the alternative hypothesis.

In this Section, we adapt the algorithm for the joint pmf for D-vine for discrete variables of Panagiotelis
et al. (2012) and Joe (2014) to the context of our study. Let U(n) = (s(y1), s(y2),--- ,s(yr))’ be a binary
valued T-vector. Furthermore, for a vector of integers i, let S; = {s(y;),4 € i}, where s; is a mass point
of S; and s, is a mass point of s(yy). Let

Fli=Pls(yy) < s¢|8i=s1,X], F;:

foii = Pls(yg) = s4 | Si = s1, X].

= P[s(yy) < sq | Si = si, X],

noting that when i = {0}, these conditional probabilities, correspond to marginal probabilities. Furthermore,
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let Cypj; be a bivariate copula for the conditional CDFs Fyj; and Fj,;, and denote

++ . At ot +— At
Cgh\i = “ghli (Fg|i’Fh|i> ’ Cgh|i = Mghli (Fg\ith\i) )

-+ ._ — ot — . - -
Cgh\i = “ghli (Fg|i’ Fh|i> ’ Cgh|i = “ghli (Fg\v Fh\i) :
The main elements of the algorithm is the following recursions:

+ _
O F oG- = [

C]—'i_—t,j—l\(j—t+1):(j—2) - Cg—"——;,j—1|(j—t+1):(j—2):| /fjfll(j*tﬂ):(j*?);
() Fymeiiymn = | Crbgmatmrsnnt-n ~ Crgmtig-reng-2) /i-tG-rrg-2)
M) fi—tiG-e+0:G-1) = Filg-esr-1) ~ Fimtig—tr1:-1)

(V) Fjlyvinmn = (O sigmrsnmn ~ Crbngioreang-n) /ieig-rrang-n:
V) Fjyerngon = | O ernaioosson-n ~ Crargig—eaaon) Himtiiig-reanG-;

(VD) fit-tr1:G-1) = FjjGots1y-1) ~ Fjjg—t1:-)
(VIT) The values based on Cj_; j(j—t+1):(j—1) is computed;

(VIII) t is incremented by 1 and back to (I).

The identity employed in the recursions is

Pls(yy) < sg|5(yn) = 51,81 =81, X] =

Pls(yg)<sg,5(yn)<sn|Si=si,X]—P[s(yg)<54,5(yn)<sn|Si=si,X]
Pls(yn)=snSi=si,X] )

The algorithm is as follows
1. Input sp = (81, , S7).

2. Allocate an T' x T matrix 7, where m; = f(j_441); fort =1,--- T and j =t +1,---,T and the

likelihood function P[s(y1) = s1,--- ,s(yr) = s7] under the alternative will appear as mpp.
3. Allocate C*t+, Ct—, ¢~*,C——, U+, U ~,U", U™, u, u, w, w, as vectors of length T.
4. Evaluate Fj*, F7,and f; = Fj+ — F; using (14) and let 7y, < f; for j =1,---, T}

5. Let CfF + Cj_y (thhFﬁ), Cl™ «Cjj (}'}Jr_l,ij)? Ot e Gy (Ff—pr), wd € e
Cj-1; (Fj__l,Fj_> for j=2,---,T;

6. SetP2j<—C;r+—C’;“_—Cj_++Cj__ for j=2,---,T;
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7. for j=2,---,T:(T1) do

8 UT « F+1|J - (CJH )/f], U e Fry = (Cf—cj") /f;, and o «
Fimay = Fly; = Filyyi

9. UJr < F]T] 1= (C.++—Ci+) /fjfl, U — FJTJ 1= (C;+—C;7) /fjfl, and u; <
i =Fji oy = F g

10. end for

11. fort =2,--- T —1: (T3,

77?[171) do

12. let C]a'B — Cj*t,j\(j*tJrl):(j*l) (U]/C_Yl, Uf), for ] =t+ 1, cee ,T and a,ﬁ S {+, _},

13, let w} < ul, wj < uj for j=t,--- T}

14. for j=t+1,---,7T:do

15. Ut (C]H - Cj**) Jwj, U™ (c;+ _ cj”) Jw; and o, U — U
16. Uf (G = C5%) jwi_y, Uy (CF 7 = €57 Jw)y and w; « U = Uy
17. end for

18. let w41, ¢ mpj1 xujfor j=t+1,---,T.

19. end for

20. Return the likelihood function 7.

Proof of Theorem 1. The characteristic function of the test statistic SN (8o | 1) conditional on

X is given by

dsny(u) = Ex [exp(iuSNr(Bo | B1))]

1 —pifxi—1,80, 681 | X]| -
=Ex [exp (Zu (ZR“ 1+Zl { w1 Bo. B | X| }s(yt)>>],

which may be expressed as

T
Psng(u) = [H ex

t=1

in n 1_pt[wt—1750751 ’X]}S ~ ))
( (Rt’tl+1 { pelTi—1, B0, B | X] (@) 7
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with Rig = 0, and Ryy—1 = 22: ln05ltt|51t7...75t717t +Incz,,¢ for t = 2,---,T, for the D-vine-array
A= (G1t)1<1<t<T, such that :l; . 1 ,T — 1 is the row with tree 7;, and column ¢ has the permutation
6,1 = (614, -+ ,04—1,) of the previously added variables, p¢[x;—1,80,81 | X] = Piler < f(ai—1,00) —
f(xi—1,81) | X], and s(9;) = s(ys — f(x¢—1,B0)). Furthermore, u € R and the complex number i = /—1.

Unlike Dufour and Taamouti (2010), ¢; for t = 1,--- , T are no longer necessarily independent conditional
on X. Therefore, we follow Heinrich (1982) by expressing the characteristic function ¢gn, (u) as follows
T

dsny (u) = [T ()

t=1
where p1(u) = Ex [exp(iu (111 {W} s(gjﬁ)” and fort =2,---,T

~ fi(u)
pelu) = ftfl(u)j

where,  fi(u) = Ex [exp(iuSN:(Bo | B1))]

Heinrich (1982) shows that ¢;(u) can alternatively be expressed as

o T P

where

pn(u) = {EX fexp (iu {SN; (B | B1)})] -

. 1 _pt[xt—b,@OHBI ‘ X] ~
e o o - L) )] -

Ex [exp (iu {SN,_1 (8o | B1)})] } / Ex [exp (iu {SNi_1 (B0 | B)})].

Therefore, the characteristic function of the PCC-POS test statistic can be expressed as

~

dsnp(w) = [ ee(w)

I (e oo (e {SRE R o} o).

where pi(u) =0, Ry o = p1(u) =0.

Let Z; = Ryt1 + ln{lgﬁ;[twjlﬁ’?%ﬁl)l()]q } s(g¢) for t = 1,---,T. Then following Heinrich (1982),

and by assuming that Zi,--- , Zr are weakly dependent, the term p;(u) can further be factorized. For

(40)

instance, a case of such weakly dependent random variables for which a Theorem exists is the regularity
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Markov type process (i.e. RMT-process). Let BS™™ = o(Zs, -+ , Zs1+m) be the Borel o-field generated by
{Zi,t =s,---,s+u}. The process {Z;}¢=12... is an RMT-process, if for 1 < s < ¢, the uniform mixing

coefficient ¢(m) < 7(s,t) with probability one, where

¢(m) = sup ¢(B}, B )

s>1

and where ¢(B5, BX,,)

s+m
o(Bi,BY,,) =  sup |P[H|G]—P[H]
GEBX,, HEB;

with sup>q (s, s+m) — 0 as m — oo. Given such dependence, p;(u) can be factorized using the results
of Theorem 2 of Heinrich (1982).

The conditional CDF of SN7 (8 | B81) evaluated at a constant ¢1(Bo, 81), where ¢1(8o, 81) € R, given
by the conditional characteristic functions ¢gn, (u) can then be obtained using the Fourier-inversion

formula [see Gil-Pelaez (1951)] as follows

du

PISN:(Bo | B1) < e1(Bo. B)] = 5 — — /0 * Im{exp(—iues (Bo, B1)) sy (w)}

1
2 U
where Vu € R, the conditional characteristic function ¢, (u) is expressed by (40) and Im{z} denotes

the imaginary part of the complex number z. Therefore, the power function can be obtained as follows

du

1B, 1) = PISNr(Bo | B0) > c1(fn, )] = 5 + + [ PiepEra(ho B, ()

11
2 7 U
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Additional simulations.

Figure 12: Power comparisons: different tests. Student’s ¢(v)

of freedom v, p =0 in (33) and € = 0.9 in (32)

t(2) distribution,  6=0.9, p=0
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-PCC-POS

test] with: (1) the ¢-test and (2) the t-test based on White’s (1980) variance correction [WT-test].
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Figure 13: Power comparisons: different tests. Student’s ¢(v) error distributions, with different degrees

of freedom v, p = 0.1 in (33) and # = 0.9 in (32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-PCC-POS

test] with: (1) the t-test and (2) the t-test based on White’s (1980) variance correction [WT-test].
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Figure 14: Power comparisons: different tests. Student’s ¢(v) error distributions, with different degrees

of freedom v, p = 0.5 in (33) and 6 = 0.9 in (32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-PCC-POS

test] with: (1) the ¢-test and (2) the t-test based on White’s (1980) variance correction [WT-test].
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Figure 15: Power comparisons: different tests. Student’s ¢t(v)

of freedom v, p = 0.9 in (33) and # = 0.9 in (32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-PCC-POS

test] with: (1) the t-test and (2) the t-test based on White’s (1980) variance correction [WT-test].
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Figure 16: Comparison of the student’s ¢ distribution with various degrees of freedom to the normal

distribution
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Note: In this figure, we compare the Normal and Student’s distribution with two, four and six degrees
of freedom - i.e. v =2, v =4, v=6.
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