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Abstract

We propose pair copula constructed point-optimal sign tests in the context of linear and nonlinear

predictive regressions with endogenous, persistent regressors, and disturbances exhibiting serial (nonlinear)

dependence. The proposed approach entails considering the entire dependence structure of the signs to

capture the serial dependence, and building feasible test statistics based on pair copula constructions of

the sign process. The tests are exact and valid in the presence of heavy tailed and nonstandard errors, as

well as heterogeneous and persistent volatility. Furthermore, they may be inverted to build confidence

regions for the parameters of the regression function. Finally, we adopt an adaptive approach based

on the split-sample technique to maximize the power of the test by finding an appropriate alternative

hypothesis. In a Monte Carlo study, we compare the performance of the proposed “quasi”-point-

optimal sign tests based on pair copula constructions by comparing its size and power to those of

certain existing tests that are intended to be robust against heteroskedasticity. The simulation results

maintain the superiority of our procedures to existing popular tests.
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1 Introduction

Predictive regressions are frequently encountered in the economics and finance literature. Within

this framework, the regressors are often highly persistent (and potentially nonstationary) with errors

that exhibit contemporaneous correlation with the disturbances in the predictive regression. This leads to

endogeneity, as a result of which the least-squared estimator of the regression parameters is biased. In such

settings, t-type tests possess a non-standard distribution and inference using asymptotic critical values is

no longer valid [see Mankiw and Shapiro (1986) and Stambaugh (1999) among others]. The econometric

analysis of predictive regressions has been addressed extensively and numerous papers have suggested

solutions to overcome this problem. These include reducing the bias in finite samples [see Nelson and Kim

(1993) and Stambaugh (1999) among others] or self generated instrumental variables (IVs) that eliminate

endogeneity [see Magdalinos and Phillips (2009), Phillips and Lee (2013) among others]. However, many

of these studies impose strict assumptions on the degree of persistency of the regressors [see Phillips

(2014) for an overview]. In this paper, we propose pair copula constructed point-optimal sign-based

tests (PCC-POS-based tests hereafter) in the context of linear and nonlinear predictive regressions. The

proposed tests are robust in the presence of persistent/endogenous regressors and errors, heterogeneous

and persistent volatility, and disturbances that exhibit serial (nonlinear) dependence. Moreover, they

are exact, consider the entire dependence structure of the signs and may be inverted to build confidence

regions for the parameters of the regression function.

Sign-based tests, such as those proposed by Campbell and Dufour (1995, 1997), Luger (2003),

and Dufour and Taamouti (2010) are randomized tests with a randomized distribution under the null

hypothesis of unpredictability [see Pratt and Gibbons (2012) for a review of randomized tests]. Hence,

under mild assumptions these procedures are distribution-free and do not suffer from the issues encountered

by t-type statistics in finite samples. These class of tests are valid in the presence of non-normal

distributions and heteroskedasiticty of unknown form [see Boldin et al. (1997) and Taamouti (2015) for a

review of sign-based tests]. Furthermore, Dufour and Taamouti (2010) show that the heteroskedasticity

and autocorrelation corrected tests developed by White (1980) (more commonly referred to as “HAC”

procedures) are plagued with low power when the errors follow GARCH-type structures or there is a

break in variance. To address these issues, Dufour and Taamouti (2010) propose point-optimal sign-

based (POS-based) inference to test whether the conditional median of a response variable is zero against

a linear regression alternative, where these procedures are further extended to nonlinear models.

In an earlier paper, we proposed an extension of the POS-based tests within a predictive regression

framework. However, in order to obtain feasible test statistics, we imposed a Markovian assumption on

the sign process. This paper relaxes the Markovian assumption on the signs, by decomposing the joint
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distribution of the signs using models proposed by Panagiotelis et al. (2012) for multivariate discrete

data based on pair copula constructions. The latter allow us to build feasible test statistics that are

robust against heavy-tailed and asymmetric distributions, provided that the errors have zero median

conditional on their own past and the explanatory variables. The PCC-POS-based tests are shown

to be robust against non-standard distributions and heteroskedasticity of unknown form, and have the

highest power among certain parametric and nonparametric tests that are intended to be robust against

heteroskedasticity. Moreover, as in Dufour and Taamouti (2010), they can be inverted to produce a

confidence region for the vector (sub-vector) of the parameters.

Although, the literature surrounding sign-based and sign-ranked inference is vast, the focus of the

POS-based tests constructed by Dufour and Taamouti (2010) is to maximize power at a nominated point

in the alternative parameter space, such that the power of the POS-based test is close to that of the power

envelope - i.e. maximum attainable power for a given testing problem [see King (1987)]. Similarly, the

PCC-POS-based tests are Neyman-Pearson type tests based on the signs, and as in Dufour and Taamouti

(2010) a practical problem concerns finding an alternative at which the power of the PCC-POS-based

tests is close to that of the power envelope. By conducting simulations exercises, Dufour and Taamouti

(2010) find that the power of the POS-based tests is shifted close to the power envelope, when 10% of

the sample is used to estimate the alternative and the remaining portion to calculate the test-statistic.

Our simulations using a variety of split-sample PCC-POS-based tests confirm these findings.

Due to the nonlinear nature of the signs, there is inherent uncertainty regarding the structure of sign

dependence. Therefore, it is important to consider the entire dependence structure of the signs. One

approach for computing the joint distribution of the signs s(y1), · · · , s(yT ), where s(yi) = 1R+∪{0}{yi},

entails taking advantage of copula functions [see Sklar (1959)], which express the joint distribution of the

signs in terms of i) the marginal distributions of the individual signs; and ii) the copula models capturing

the dependence of the T signs. As the signs are discrete, the likelihood function of the POS-based tests

under the alternative hypothesis can then be calculated using rectangle probabilities and in turn estimated

using copulas with closed analytical form. However, this approach would not yield feasible test statistics,

as the number of multivariate copulas that need to be evaluated increase at an exponential rate with

growing sample sizes T . As a result of this curse of dimensionality, the literature concerning calculating

probability mass functions (p.m.f hereafter) using discrete data is limited to low-dimensional data and

copulas that are fast to calculate [see Nikoloulopoulos and Karlis (2008, 2009) and Li and Wong (2010)].

To propose feasible POS-based test statistics within a predictive regression framework, we use a

discrete analogue of the vine PCCs introduced by Panagiotelis et al. (2012). The likelihood function of

the signs under the alternative hypothesis can then be decomposed as a vine PCC under certain set of
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conditions that are later outlined in the paper. The most important advantage of this method is that for

a sample of size T , only 2T (T−1) bivariate copula evaluations are required, as opposed to 2T multivariate

copula evaluations using rectangle probabilities. Another advantage of the vine PCC methodology is that

model selection techniques can be used to identify the conditional independence in the process of signs

in order to create more parsimonious PCC models.

The rest of the paper is organized as follows: in Section 2, we motivate the use of the discrete analogue

of the vine PCC for building POS-based tests. In Section 3, we outline the conditions under which vine

PCCs can be implemented and we also discuss the choice of the PCC model. We then propose PCC-

POS-based test statistics for linear and nonlinear models. Secion 4, discusses the estimation approach

implemented for the vine PCC models. In Section 5, we derive the power envelope and highlight the

choice of the alternative hypothesis for computing the PCC-POS-based test statistic. In Section 6, we

discuss the problem of finding a confidence set for a vector (subvector) of parameters using the projection

techniques. In Section 7, we assess the performance of the proposed tests in terms of size and power.

Finally, in Section 8, we conclude the findings of the paper.

2 Framework

Consider a stochastic process Z = {Zt = (yt,x
′
t−1) : Ω→ R(k+1), t = 1, 2, · · · } defined on a probability

space (Ω,F , P ). Within a framework of a predictive regression yt can linearly be explained by a vector

variable xt−1

yt = β′xt−1 + εt, t = 1, · · · , T, (1)

where yt is the dependent variable and xt−1 is an (k+1)×1 vector of stochastic explanatory variables, say

xt−1 = [1, x1,t−1, · · · , xk,t−1]′, β ∈ R(k+1) is an unknown vector of parameters with β = [β0, β1, · · · , βk]′

and

εt | X ∼ Ft(. | X)

where Ft(. | X) is an unknown conditional distribution function and X=[x′0, · · · ,x′T−1]′ is an T × (k+ 1)

information matrix.

We follow Coudin and Dufour (2009) by considering the median as an alternative measure of central

tendency, which differs from the Martingale Difference Sequence (MDS hererafter) assumption. In the

latter, it is generally assumed that for an adapted stochastic sequence {Zt,Ft, t = 1, 2, · · · }, where Ft is

a σ-field in Ω, Fs ⊆ Ft for s < t, E{εt | Ft−1} = 0, ∀t ≥ 1. Thus the alternative implies imposing a

median-based analogue of the MDS on the error process - namely we suppose that εt is a strict conditional
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mediangale

P [εt > 0 | εt−1, X] = P [εt < 0 | εt−1, X] =
1

2
, (2)

with

ε0 = {∅}, εt−1 = {ε1, · · · , εt−1}, for t ≥ 2.

Note (2) entails that εt | X has no mass at zero for all t, which is only true if εt | X is a

continuous variable. Model (1) in conjunction with assumption (2) allows the error terms to possess

asymmetric, heteroskedastic and serially dependent distributions, so long as the conditional medians are

zero. Assumption (2) allows for many dependent schemes, such as those of the form ε1 = σ1(x1, · · · , xt−2)ε1,

εt = σ1(x1, · · · , xt−2, ε1, · · · , εt−1)εt ,t = 2, · · · , n, where ε1, · · · , εn are independent with a zero median.

In time-series context this includes models such as ARCH, GARCH or stochastic volatility with non-

Gaussian errors. Furthermore, in the mediangale framework the disturbances need not be second order

stationary.

Suppose, we wish to test the null hypothesis of unpredictability

H0 : β = 0, (3)

against the alternative

H1 : β = β1. (4)

where 0 is a (k + 1)× 1 zero vector. Define the vector of signs as follows

U(T ) = (s(y1), · · · , s(yT ))′,

where for t = 1, · · · , T

s(yt) =

 1, if yt ≥ 0

0, if yt < 0
.

We consider Neyman-Pearson type test based on the signs. Thus, to build POS-based tests for testing

the null hypothesis (3) against the alternative (4), we first define the likelihood function of the sample in

terms of signs s(y1), · · · , s(yT ) conditional on X

L(U(T ),β, X) = P [s(y1) = s1, · · · , s(yT ) = sT | X] =
T∏
t=1

P
[
s(yt) = st | S

¯t−1 = s
¯t−1, X

]
, (5)

with

S
¯0 = {∅}, S

¯t−1 = {s(y1), · · · , s(yt−1)}, for t ≥ 2,
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and

P [s(y1) = s1 | S
¯0 = s

¯0, X] = P [s(y1) = s1 | X],

where each st for 1 ≤ t ≤ T takes two possible values of 0 and 1. Under model (1) and assumption (2),

the variables s(ε1), · · · , s(εT ) and in turn s(y1), · · · , s(yT ) are i.i.d conditional on X, according to the

distribution

P [s(ε1) = 1 | X] = P [s(ε1) = 0 | X] =
1

2
, t = 1, · · · , T.

This results holds true iff for any combination of t = 1, · · · , T there is a permutation π : i → j such

that the mediangale assumption holds for j. Then the signs s(ε1), · · · , s(εT ) are i.i.d [see Theorem 1 of

Coudin and Dufour (2009)]. Therefore, under the null hypothesis of unpredictability we have

P [s(yt) = 1 | X] = P [s(yt) = 0 | X] =
1

2
, t = 1, · · · , T. (6)

Consequently, under the null hypothesis of orthogonality, the log-likelihood function conditional on X is

given by

L0(U(T ),0, X) =
T∏
t=1

P [s(yt) = st | X] =

(
1

2

)T
.

On the other hand, under the alternative we have

L1(U(T ),β1, X) =

T∏
t=1

P [s(yt) = st | S
¯t−1 = s

¯t−1, X],

where now for t = 1, · · · , T

yt = β′1xt−1 + εt.

In an earlier paper, we considered optimal sign-based tests (in the Neyman-Pearson sense), which

maximize power under the constraint P [Reject H0 | H0] ≤ α, where α is an arbitrary significance level

[see Lehmann and Romano (2006)]. Let H0 and H1 be defined by (3) and (4) respectively. Then under

the assumptions (1) and (2), the log-likelihood ratio

SLT (β1) = ln

{
L1(U(T ),β1, X)

L0(U(T ),0, X)

}
> c, (7)

is most powerful for testing H0 against H1 among level α tests based on the signs (s(y1), · · · , s(yT ))′,

where c is the smallest constant such that

P [SLT (β1) > c | H0] ≤ α,
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and α is an arbitrary significance level.

For POS-based tests within a predictive regression framework, the test statistic requires the calculation

of P [yt ≥ 0 | S
¯t−1 = s

¯t−1, X] and P [yt < 0 | S
¯t−1 = s

¯t−1, X]. The latter is not easy to compute, as it

involves the distribution of the joint process of signs s(y1), · · · , s(yT ), conditional on X, which is unknown.

Therefore, to obtain feasible test statistics, we may impose a Markovian assumption on the sign process.

However, it may be important to capture the dependence structure of the entire process.

In this paper, we consider the entire dependence structure of the vector of signs by taking advantage

of copulas. The Theorem of Sklar (1959) states that there exists a copula C such that

F (s1, · · · , sT | X) = C(F1(s1 | X), · · · , FT (sT | X)), (8)

where F is a conditional joint cumulative distribution function (CDF hereafter) of the signs vector

S
¯

= (s(y1), · · · , s(yT ))′ with conditional marginal distribution functions Fj for j = 1, 2, · · · , T . Copula

C(.) is unique for continuous variables, but for discrete variables, it is unique only on the set

Range(F1)× · · · × Range(FT ),

which is the Cartesian product of the ranges of the conditional marginal distribution functions. To

illustrate an example of non-uniqueness in the discrete case, let us consider a sample of two discrete

binary variables, say s(y1) and s(y2), with corresponding conditional marginal distribution functions F1

and F2. We know that Fj ∼ Bernoulli(pj) for j = 1, 2, such that

Fj(sj | X) =


0, for sj < 0

1− pj , for 0 ≤ sj < 1

1, for sj ≥ 1

(9)

Thus, Range(F1) = {0, 1 − p1, 1} and Range(F2) = {0, 1 − p2, 1}, with the copula only being unique for

C(1 − p1, 1 − p2), noting that C(0, 1 − pj) = 0 and C(1, 1 − pj) = 1 − pj for j = 1, 2. However, this

non-uniqueness does not preclude the use of parametric copulas for modelling discrete data [see. Joe

(1997), Song et al. (2009)].

By considering this bivariate example, the conditional p.m.f can be expressed in terms of rectangle

probabilities,

P [s(y1) = s1, s(y2) = s2 | X] = P [s1 − 1 < s(y1) ≤ s1, s2 − 1 < s(y2) ≤ s2 | X]

= F (s1, s2 | X)− F (s1 − 1, s2 | X)
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=− F (s1, s2 − 1 | X) + F (s1 − 1, s2 − 1 | X),

and in turn in terms of copulas as follows

P [s(y1) = s1, s(y2) = s2 | X] = F (s1, s2 | X)− F (s1 − 1, s2 | X)

=− F (s1, s2 − 1 | X) + F (s1 − 1, s2 − 1 | X)

= C(F1(s1 | X), F2(s2 | X))− C(F1(s1 − 1 | X), F2(s2 | X))

=− C(F1(s1 | X), F2(s2 − 1 | X)) + C(F1(s1 − 1 | X), F2(s2 − 1 | X)),

which implies that the T -variate conditional likelihood function (5) can be expressed in terms of 2T finite

differences

P [s(y1) = s1, · · · , s(yT ) = sT | X] =
∑
i1=0,1

· · ·
∑
iT =0,1

(−1)i1+···+iTP [s(y1) ≤ s1 − i1, · · · , s(yT ) ≤ sT − iT | X]

=
∑
i1=0,1

· · ·
∑
iT =0,1

(−1)i1+···+iTC(F1(s1 − i1 | X), · · · , FT (sT − iT | X)).

Evidently, the calculation of the conditional likelihood function (5) using this approach would require

2T multivariate copula evaluations, which is not computationally feasible. However, by employing the

vine PCC introduced later in the paper, we will show that this number can be reduced to only 2T (T − 1)

bivariate copula evaluations. The latter method provides us with flexibility, since any multivariate discrete

distribution can be decomposed as a vine PCC under a set of conditions that are discussed in the following

Section.

3 Pair copula constructions of point-optimal sign tests for predictive

regressions

In this Section, we derive POS-based tests in the context of linear and nonlinear regression models

based on vine PCC decomposition. Following a structure similar to Dufour and Taamouti (2010), we

first consider the problem of testing whether the conditional median of a vector of observations is zero

against a linear regression alternative. We further consider the conditions under which the conditional

likelihood function under the alternative hypothesis can be decomposed as a vine PCC, and as such,

choose an appropriate vine model. These results are later generalized to test whether the coefficients of a

possibly nonlinear median regression function have a given value against an alternative nonlinear median

regression.
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3.1 Testing orthogonality hypothesis in linear predictive regressions

Consider the problem of testing the null hypothesis of unpredictability (3) against the alternative (4),

using the test statistic (7) and given the assumptions (1) and (2). As it was shown in Section 2, under

the alternative hypothesis the conditional likelihood function can be expressed as

L1(U(T ),β1, X) =
T∏
t=1

P
[
s(yt) = st | S

¯t−1 = s
¯t−1, X

]
. (10)

Let s(yj) be a scalar element of S
¯t−1, with S

¯
\j
t−1 = S

¯t−1\s(yj) such that

S
¯
\j
t−1 = {s(y1), s(y2), · · · , s(yj−1), s(yj+1), · · · , s(yt−1)}

and s(yt) /∈ S
¯t−1. By choosing a single element of S

¯t−1, say s(yj), we would have

P
[
s(yt) = st | S

¯t−1 = s
¯t−1, X

]
=
P [s(yt) = st, s(yj) = sj | S

¯
\j
t−1 = s

¯
\j
t−1, X]

P [s(yj) = sj | S
¯
\j
t−1 = s

¯
\j
t−1, X]

=
∑
kt=0,1

∑
kj=0,1

(−1)kt+kj×

=
{
P [s(yt) ≤ st − kt, s(yj) ≤ sj − kj | S

¯
\j
t−1 = s

¯
\j
t−1, X]

}
=/P [s(yj) = sj | S

¯
\j
t−1 = s

¯
\j
t−1, X],

(11)

where the bivariate conditional probability in (11) can be expressed in terms of copulas as follows

P [s(yt) = st | S
¯t−1 = s

¯t−1, X] =
∑
kt=0,1

∑
kj=0,1

(−1)kt+kj
{

=C
s(yt),s(yj)|S

¯
\j
t−1

(
F
s(yt)|S

¯
\j
t−1

(st − kt | s
¯
\j
t−1, X), F

s(yj)|S
¯
\j
t−1

(sj − kj | s
¯
\j
t−1, X)

)}
=/P [s(yj) = sj | S

¯
\j
t−1 = s

¯
\j
t−1, X].

(12)

Further, let S
¯
\i,j
t−1 = S

¯
\j
t−1\s(yi), such that s(yi) is a scalar element of S

¯
\j
t−1. Then the arguments F

s(yt)|S
¯
\j
t−1

9



and F
s(yj)|S

¯
\j
t−1

in copula expression (12) can be presented by the general form

F
s(yt)|s(yi),S

¯
\i,j
t−1

(st − kt | si, s
¯
\i,j
t−1, X) ={

C
s(yt),s(yi)|S

¯
\i,j
t−1

(
F
s(yt)|S

¯
\i,j
t−1

(st − kt | s
¯
\i,j
t−1, X), F

s(yi)|S
¯
\i,j
t−1

(s(yi) | s
¯
\i,j
t−1, X)

)
−

= C
s(yt),s(yi)|S

¯
\i,j
t−1

(
F
s(yt)|S

¯
\i,j
t−1

(st − kt | s
¯
\i,j
t−1, X), F

s(yi)|S
¯
\i,j
t−1

(s(yi)− 1 | s
¯
\i,j
t−1, X)

)}
/P [s(yi) = si | S

¯
\i,j
t−1 = s

¯
\i,j
t−1, X].

(13)

Thus, decomposition (12), and in turn (13) can be applied recursively to the elements of the conditional

likelihood function (5), such that it is expressed in terms of bivariate copulas. Let S
¯t−1 = {s(y1), · · · , s(yt−1)}

be the variables that s(yt) for t = 2, · · · , T is conditioned on. We follow Joe (2014), by letting σt−1 =

{σ(1, t), · · · , σ(t− 1, t)} be a permutation of S
¯t−1, such that s(yt) is paired sequentially first with σ(1, t),

then σ(2, t) and finally σ(t− 1, t), where in the rth step (2 ≤ r ≤ t− 1), σ(r, t) is paired to t conditional

on σ(1, t), · · · , σ(r − 1, t). For n ≤ 3 (i.e. t = 2, 3) there are only three possible permutations with

σ1 = {s(y1)} for t = 2, and σ2 = {s(y1), s(y2)}, as well as σ2 = (s(y2), s(y1)) for t = 3 respectively.

Therefore, under assumptions (1) and (2), and with T ≤ 3, let H0 and H1 be defined by (3) - (4), then

the Neyman-Pearson type test-statistic based on the signs (s(y1), · · · , s(yT ))′ can be expressed as

SLT (β1) = lnP [s(y1) = s1 | X] +

T∑
t=2

ln ∆
s+t
s−t

∆
s+t−1

s−t−1

Ct,t−1|t−2

−
T∑
t=2

lnP [s(yt−1) = st−1 | S
¯t−2 = s

¯t−2, X]− T ln

{
1

2

}
,

for t = 2, · · · , T , where

∆
s+t
s−t

∆
s+t−1

s−t−1

Ct,t−1|t−2 =
∑
kt=0,1

∑
kt−1=0,1

(−1)kt+kt−1

××
(
Cs(yt),s(yt−1)|S

¯t−2

(
Fs(yt)|S

¯t−2
(st − kt | s

¯t−2, X), Fs(yt−1)|S
¯t−2

(st−1 − kt−1 | s
¯t−2, X)

))
and such that

lnP [s(y1) = s1 | S
¯0 = s

¯0, X] = s(y1) ln

{
P [y1 ≥ 0 | X]

P [y1 < 0 | X]

}
+ lnP [y1 < 0 | X].

For T > 3, the permutations σt−1 are dependent on the choice of the permutations at stages 3, · · · , t−1.

Therefore, an issue that requires considerable attention is whether there exists a decomposition such as

the one considered in the earlier example for T > 3. Furthermore, the conditional likelihood function
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expressed in terms of bivariate copulas by recursively using (12) and (13), assumes that a single copula is

specified for each conditional bivariate distribution F
s(yt),s(yj)|S

¯
\j
t−1

in decomposition (10) over all possible

values of S
¯
\j
t−1. This implies that the copula is unique for the Cartesian product of the ranges of conditional

CDFs F
s(yt)|S

¯
\j
t−1

and F
s(yj)|S

¯
\j
t−1

. Therefore, the decomposition must be such that each conditional bivariate

distribution in said vine has a constant conditional copula [see Panagiotelis et al. (2012)]. For a constant

conditional copula to exist, the following conditions outlined by Panagiotelis et al. (2012) must be satisfied.

Definition 1 (Existence of constant conditional copula) Consider the conditional bivariate distribution

function F
s(yt),s(yj)|S

¯
\j
t−1

. We say that a copula C = C
s(yt),s(yj)|S

¯
\j
t−1

is constant over all possible values of

S
¯
\j
t−1 if ∑

m=0,1

∑
n=0,1

(−1)m+nC(ak−m, bl−n) ≥ 0, ∀k, l ∈ {1, 2} × {1, 2},

where a0 < a1 < a2 and b0 < b1 < b2, are the distinct points corresponding to the ranges of the conditional

Bernoulli CDFs F
s(yt)|S

¯
\j
t−1

and F
s(yj)|S

¯
\j
t−1

respectively, such that a0 = b0 = 0 and a2 = b2 = 1, and where

further, the following constraints are satisfied:

C
s(yt),s(yj)|S

¯
\j
t−1

(
a
s(yt)|S

¯
\j
t−1

, b
s(yj)|S

¯
\j
t−1

)
= P [s(yt) ≤ st, s(yj) ≤ sj | S

¯
\j
t−1 = s

¯
\j
t−1, X],

C
s(yt),s(yj)|S

¯
\j
t−1

(
1, b

s(yj)|S
¯
\j
t−1

)
= b

s(yj)|S
¯
\j
t−1

, C
s(yt),s(yj)|S

¯
\j
t−1

(
a
s(yt)|S

¯
\j
t−1

, 1

)
= a

s(yt)|S
¯
\j
t−1

,

with a
s(yt)|S

¯
\j
t−1

:= P [s(yt) ≤ st | S
¯
\j
t−1 = s

¯
\j
t−1, X] and b

s(yj)|S
¯
\j
t−1

:= P [s(yj) ≤ sj | S
¯
\j
t−1 = S

¯
\j
t−1, X].

To satisfy the above conditions, the vine decomposition must be such that the strength of the

dependence of the conditional bivariate distribution does not vary much across different values of the

conditioning set [see Panagiotelis et al. (2012)]. As we are dealing with time-series data, the D-vine

decomposition yields a constant dependence structure over different values of S
¯
\j
t−1, and is thus, the most

appropriate and intuitive choice for the decomposition of the conditional likelihood function (10).

The D-vine PCC (figure 1) is constructed by T − 1 trees, say D = {T1, · · · , TT−1}, comprised of

the edges ξ(D) = ξ(T1) ∪ · · · ∪ ξ(TT−1), where ξ(Tl) refers to the edges of the tree Tl. In the first

tree T1, the marginals F (s1 | X), F (s2 | X), · · · , F (sT | X), are arranged as nodes in consecutive

order, say N(T1) := {1, 2, · · · , T − 1, T}, where the nodes are of degree two, meaning that no more

than two edges is connected to each node. The corresponding edges join the adjacent nodes, such that

ξ(T1) := {12, 23, · · · , (T −1, T )}. Next, the edges of the first tree ξ(T1) become the nodes of T2, a process

which is completed in a recursive manner, such that N(Tl+1) = ξ(Tl), with the edges of each tree joining

the adjacent nodes, and with the mutual elements between the nodes becoming the conditioning set.
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Figure 1: D-vine PCC for the T -variate case

1 2 T − 1 T T1
12 T − 1, T

12 23 T − 1, T
T2

13 | 2

1, T − 1 | S
¯\j−

2, T | S
¯\j+

TT−1

1, T | S
¯\j

Note: D-vine for a sample size T consists of T − 1 trees. The first tree consists of the conditional

marginals ordered consecutively as nodes, with the edges connecting the adjacent nodes, and with the

elements shared by the two nodes going in the conditioning set. The edges of each tree Tl become the

nodes of the tree Tl+1. In this figure, S
¯\i−

and S
¯\j+

correspond to the elements S
¯\j−

:= {2, 3, · · · , T − 2}

and S
¯\j+

:= {3, · · · , T − 1} respectively, with S
¯\j

:= {2, 3, · · · , T − 1}.
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To express the conditional likelihood function (10) as a D-vine, we begin by calculating the conditional

marginals F1, · · · , FT , where Ft ∼ Bernoulli(pt), for t = 1, · · · , T , with conditional CDFs that are

expressed as (9). Therefore, under assumptions (1) and (2), we have

Ft(st | X) =


0, for st < 0

1− P [εt ≥ −β′xt−1 | X], for 0 ≤ st < 1

1, for st ≥ 1

, t = 1, · · · , T. (14)

Once the marginals are obtained, the next step consists of evaluating the copulas in the

first tree - i.e. C12(F1, F2), · · · , CT−1,T (FT−1, FT ), corresponding to the edges ξ(T1)). In

the second tree, the copulas C13|2(F1|2, F3|2), · · · , CT−2,T |T−1(FT−2|T−1, FT |T−1) are evaluated, then

C14|23(F1|23, F4|23), · · · , CT−3,T |T−2,T−1(FT−3|T−2,T−1, FT |T−2,T−1) in the third tree, and so on.

In the case of continuous variables, say {s∗(yt) ∈ R, t = 1, · · · , T}, the construction of the D-vine

involves an iterative copula evaluation process for the trees T1, · · · , TT−1. This leads to T (T −1)/2 copula

evaluations, which correspond to one copula evaluation for each edge [see Appendix]. On the other hand,

for discrete variables, the conditional p.m.fs are expressed as in (12), which requires the evaluation of the

following four copulas

C++
t,j|\j(F

+
t|\j, F

+
j|\j), C+−

t,j|\j(F
+
t|\j, F

−
j|\j),

C−+
t,j|\j(F

−
t|\j, F

+
j|\j), C−−t,j|\j(F

−
t|\j, F

−
j|\j),

where F+
t|\j = P [s(yt) ≤ st | S

¯
\j
t−1 = s

¯
\j
t−1, X] and F−t|\j = P [s(yt) ≤ st − 1 | S

¯
\j
t−1 = s

¯
\j
t−1, X]. Henceforth,

4× T (T − 1)/2 bivariate copulas need to be evaluated in the case of discrete data.

Let us express the conditional joint p.m.f of the signs as follows

P1[s(y1) = s1 | X]×
T∏
t=2

Pt|1:t−1[s(yt) = st | s(y1) = s1, · · · , s(yt−1) = st−1, X], (15)

where following the results by Stoeber et al. (2013), if the D-vine is expressed as a vine-array A =

(σlt)1≤l≤t≤T , where l = 2, · · · , T − 1 is the row with tree Tl, and column t has the permutation σt−1 =
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(σ(1, t), · · · , σ(t− 1, t)) of the previously added variables, such that



− 12 23 34 · · · T − 1, T

− 13 | 2 24 | 3 · · · T − 2, T | T − 1

. . . · · · · · ·
...

− 1, T − 1 | S
¯\j−

2, T | S
¯\j+

− 1, T | S
¯\j

−


, A =



1 1 2 3 · · · T − 1

2 1 2 · · · T − 2

. . . · · · · · ·
...

T − 2 1 2

T − 1 1

T


then

Pt|1:t−1[s(yt) = st | s(y1) = s1 : s(yt−1) = st−1, X] =

{
2∏

l=t−1

cσltt,|σ1t,··· ,σt−1,t

}
× cσltt × Pt[s(yt) = st | X],

(16)

where following Joe (2014), the copula densities in expression (16) are calculated by

ct,j|\j =
C++
t,j|\j(F

+
t|\j, F

+
j|\j)− C

−+
t,j|\j(F

−
t|\j, F

+
j|\j)− C

+−
t,j|\j(F

+
t|\j, F

−
j|\j) + C−−t,j|\j(F

−
t|\j, F

−
j|\j)

Pt|\j[s(yt) = st | S
¯
\j
t−1 = s

¯
\j
t−1, X]Pj|\j[s(yj) = sj | S

¯
\j
t−1 = s

¯
\j
t−1, X]

, (17)

which leads to the following proposition.

Proposition 1 Let A = (σlt)1≤l≤t≤T be a D-vine array for the signs s(y1), · · · , s(yT ). Under assumptions

(1) and (2), let H0 and H1 be defined by (3) - (4),

SLT (β1) =

T∑
t=2

2∑
l=t−1

ln cσltt,|σ1t,··· ,σt−1,t
+

T∑
t=2

ln cσ1tt +

T∑
t=1

s(yt)at(β1) > c1(β1),

where

at(β1) = ln

{
1− Pt[εt ≤ −β′xt−1 | X]

Pt[εt ≤ −β′xt−1 | X]

}
,

and suppose the constant c1(β1) satisfies P [SLT (β1) > c1(β1)] = α under H0, with 0 < α < 1. Then the

test that rejects H0 when

SLT (β1) > c1(β1) (18)

is most powerful for testing H0 against H1 among level-α tests based on the signs
(
s(y1), · · · , s(yT )

)′
.

Under the null hypothesis, the signs s(y1), · · · , s(yT ) are i.i.d. according to Bernoulli Bi(1, 0.5), with

the distribution of SLT (β1) only depending on the weights at(β1), without the presence of any nuisance

parameters. Assumption (2) implies that tests based on SLT (β1), such as the test given by (27), are

distribution-free and robust against heteroskedasticity of unknown form. On the other hand, under the

14



alternative hypothesis, the power function of the test depends on the form of the distribution of εt. A

special case is where ε1, · · · , εT are independently distributed according to N(0, 1), which leads to the

optimal test statistic assuming the following form

SLT (β1) =
T∑
t=2

2∑
l=t−1

ln cσltt,|σ1t,··· ,σt−1,t
+

T∑
t=2

ln cσ1tt +
T∑
t=1

s(yt)at(β1) > c1(β1),

where

at(β1) = ln

{
Φ(β′xt−1)

1− Φ(β′xt−1)

}
,

where Φ(.) is the standard normal distribution function. The distribution of SLT (β1) can be simulated

under the null hypothesis with sufficient number of replications, and the critical values can be obtained

to any degree of precision.

3.2 Testing general full coefficient hypothesis in nonlinear predictive regressions

We now consider the nonlinear predictive regression model

yt = f(xt−1,β) + εt, t = 1, · · · , T , (19)

where xt−1 is a (k+1)×1 vector of stochastic explanatory variables, such that xt−1 = [1, x1,t−1, · · · , xk,t−1]′,

f( · ) is a scalar function, β ∈ R(k+1) is an unknown vector of parameters and

εt | X ∼ Ft(. | X)

where as before Ft(. | X) is a distribution function and X = [x′0, · · · ,x′T−1] is an T × (k + 1) matrix.

Suppose that the error process {εt, t = 1, 2, · · · } is a strict conditional mediangale, such that

P [εt > 0 | εt−1, X] = P [εt < 0 | εt−1, X] =
1

2
, (20)

with

ε0 = {∅}, εt−1 = {ε1, · · · , εt−1}, for t ≥ 2

and where (20) entails that εt | X has no mass at zero, i.e. P [εt = 0 | X]=0 for all t. We do not require

that the parameter vector β be identified.

We consider the problem of testing the null hypothesis

H(β0) : β = β0, (21)
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against the alternative hypothesis

H(β1) : β = β1, (22)

We construct a test statistic for testing H(β0) against H(β1) in a similar manner to Section 3.1, by

transforming model (19) to

ỹt = g(xt−1,β,β0) + εt, t = 1, · · · , T

where ỹt = yt − f(xt−1,β0) and g(xt−1,β,β0) = f(xt−1,β) − f(xt−1,β0). Notice that testing H(β0)

against H(β1) is equivalent to testing

H̄0 : g(xt−1,β,β0) = 0, for t = 1, · · · , T

where 0 is a (k + 1)× 1 zero vector, against the alternative

H̄A : g(xt−1,β,β0) = f(xt−1,β1)− f(xt−1,β0), for t = 1, · · · , T.

For Ũ(T ) = (s(ỹ1), · · · , s(ỹT ))′, where for 1 ≤ t ≤ T

s(ỹt) =

 1, if ỹt ≥ 0

0, if ỹt < 0
.

As before, the conditional joint p.m.f of the process of signs is expressed as

P1[s(ỹ1) = s̃1 | X]×
T∏
t=2

Pt|1:t−1[s(ỹt) = s̃t | s(ỹ1) = s̃1, · · · , s(ỹt−1) = s̃t−1, X]. (23)

Furthermore, the D-vine-array Ã = (σ̃lt)1≤l≤t≤T , is such that l = 2, · · · , T − 1 is the row with tree Tl,

and column t has the permutation σ̃t−1 = (σ̃1t, · · · , σ̃t−1,t) of the previously added variables. Then

Pt|1:t−1[s(ỹt) = s̃t | s(ỹ1) = s̃1, · · · , s(ỹt−1) = s̃t−1, X] =

{
2∏

l=t−1

cσ̃ltt,|σ̃1t,··· ,σ̃t−1,t

}
×cσ̃ltt×Pt[s(ỹt) = s̃t | X],

(24)

which leads to the following corollary.

Corollary 1 Let Ã = (σ̃lt)1≤l≤t≤T be a D-vine array for the signs s(ỹ1), · · · , s(ỹT ). Under assumptions

(19) and (2), let H(β0) and H(β1) be defined by (21) - (22),

SNT (β0 | β1) =

T∑
t=2

2∑
l=t−1

ln cσ̃ltt,|σ̃1t,··· ,σ̃t−1,t
+

T∑
t=2

ln cσ̃1tt +

T∑
t=1

s(yt − f(xt−1,β0))ãt(β0 | β1) > c1(β0,β1),
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where

ãt(β0 | β1) = ln

{
1− pt[xt−1,β0,β1 | X]

pt[xt−1,β0,β1 | X]

}
, pt[xt−1,β0,β1 | X] = Pt[εt ≤ f(xt−1,β0)−f(xt−1,β1) | X]

and suppose the constant c1(β0,β1) satisfies the constraint P [SNT (β0 | β1) > c1(β0,β1)] = α under

H(β0), with 0 < α < 1. Then the test that rejects H(β0) when

SNT (β0 | β1) > c1(β0,β1) (25)

is most powerful for testing H(β0) against H(β1) among level-α tests based on the signs
(
s(ỹ1), · · · , s(ỹT )

)′
.

Consider a linear function f(xt−1,β) = β′xt−1, and assume that under the alternative hypothesis εt

for t = 1, · · · , T follows a standard normal distribution (i.e. εt ∼ N(0, 1)). Then the statistic for testing

H(β0) against the alternative H(β1) is given by

SNT (β0 | β1) =
T∑
t=2

2∑
l=t−1

ln cδ̃ltt,|δ̃1t,··· ,δ̃t−1,t
+

T∑
t=2

ln cδ̃1tt +
T∑
t=1

s(yt − β′0xt−1)δ̃t(β0 | β1) > c1(β0,β1),

where

ãt(β0 | β1) = ln

{
Φ((β1 − β0)′xt−1)

1− Φ((β1 − β0)′xt−1)

}
,

such that Φ(.) is the standard normal distribution function. As in Section 3, the distribution of SNT (β0 |

β1) can be simulated under the null hypothesis with sufficient number of replications and the relevant

critical values can be obtained to any degree of precision.

4 Estimation

In this Section, we first consider the issue of estimating the bivariate copulas in the D-vine decomposition

and suggest a sequential estimation strategy for the parameters of the copulas. We then turn our attention

to the problem of selecting a class of parametric bivariate copulas. The choice of the latter has an

important implication on introducing dependence to the vector of signs.

4.1 Sequential estimation of the D-vine

The calculation of the test statistics in Section 3 requires four bivariate copula evaluations at T (T−1)/2

distinct points, leading to a total of 2T (T − 1) copula evaluations. The estimation of the D-vine is often

facilitated with the maximum likelihood (MLE hereafter). However, since the latter requires optimization

with respect to at least 2T (T − 1) copula parameters, sequential estimation procedures are favored
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for faster computation times, with the caveat that the increased speed comes at the cost of efficiency.

Furthermore, the sequential estimates may be provided as starting points for the simultaneous numerical

optimization using MLE [see Czado et al. (2012), Haff (2012) and Dissmann et al. (2013) among others].

We assume that the copulas are specified parametrically, given by an appropriate parameter (vector).

More specifically, let θθθl = (θ′1,k, · · · , θ′T−l,k)′ be the set of all the parameters to be estimated for tree Tl,

l = 1, · · · , T − 1 of the D-vine, with k = l − 1 conditioning variables. Therefore, θθθ = (θθθ′1, · · · , θθθ′T−1)′ is

the entire set of the parameters that need to be estimated for the D-vine decomposition. To estimate the

parameter vector θθθ, we follow a sequential estimation strategy proposed by Czado et al. (2012), whereby

first, the parameters of the unconditional bivariate copulas are estimated. These parameters are then

utilized as means of estimating the parameters of bivariate copulas with a single conditioning variable.

The latter are then used to estimate the pair-copulas with two conditioning variables, and so on. This

bivariate copula estimation approach is continued sequentially until all parameters are estimated.

In the first step, the marginals are obtained by computing the conditional Bernoulli CDFs (14) using

an arbitrary distribution, such as the standard normal distribution considered in Section 3. The second

step of the process involves estimating the parameters of the unconditional copula, by fixing the marginals

with their aforementioned estimates and maximizing the bivariate likelihood corresponding to each copula

in each tree Tl to obtain θ̂̂θ̂θl = (θ̂′1,k, · · · , θ̂′T−l,k) for l = 1, · · · , T − 1 and k = l − 1 . As all the variables

are discrete, the log-likelihood function, say, for the unconditional copula Ct,t+1 for t = 1, · · · , T − 1 for

the signs (s(yi,t), s(yi,t+1)), i = 1, · · · , n− 1 is expressed as

L(θt,0) =
T−1∑
i=1

log

 ∑
{a1,a2}∈{−,+}2

(−1)ajCt,t+1

(
Ft(s

a1
i,t | X; β̂1), Ft+1(sa2

i,t+1 | X; β̂1); θt,0

) .

The estimate of the copula parameter, θ̂t,0 for t = 1, · · · , T − 1, is then obtained as follows

θ̂t,0 = arg max
θt,0

L(θt,0),

which under regularity conditions solves
∂L(θt,0)

∂θt,0
= 0.

Let us illustrate this process with an example: once the marginals are obtained, the next step involves

estimating the parameters θt,0 for t = 1, · · · , T − 1 of the unconditional copulas. Next, we are interested

in estimating θt,1 for t = 1, · · · , T − 2. Define

ût|t+1 = Ft|t+1

(
st | st+1, X; θ̂t,0

)
,
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and

v̂t+2|t+1 = Ft+2|t+1

(
st+2 | st+1, X; θ̂t+1,0

)
,

for t = 1, · · · , T − 2. The data ût|t+1 and v̂t+2|t+1 is then used to estimate the parameters θt,1 for t =

1, · · · , T − 2, denoted by θ̂t,1. This procedure is repeated sequentially until all parameters are estimated.

Haff et al. (2010) show that under regularity conditions, the sequential estimates are asymptotically

normal; however, as noted earlier their asymptotic covariance is “intractable” and the faster computation

time comes at the cost of efficiency. Therefore, the sequential estimates can be utilized as the starting

values of the high-dimensional MLE.

Another approach for estimating one-parameter pair-copulas in the sequential estimation procedure

for copula families with a known relationship to Kendall’s τ consists of inverting the empirical Kendall’s

τ based on, say, ût and ût+1 for t = 1, · · · , T − 1 for the edges of the first tree. However, we provide

a caveat that the Kendall’s τ of discrete data does not correspond to the Kendall’s τ of the bivariate

copulas [see Denuit and Lambert (2005)]. Denuit and Lambert (2005) show that by continuous extension

of the discrete variables with a perturbation with values in [0, 1], the continuous features of Kendall’s τ

are adaptable to discrete data. In other words

τ(s∗(yt), s
∗(yt+1)) = 4

∫ ∫
[0,1]2

C∗t,t+1 (ût, ût+1) dC∗t,t+1 (ût, ût+1)− 1

for t = 1, · · · , T − 1, such that ût = F
(
s∗t | X; β̂1

)
,

s∗(yt) = s(yt) + U − 1

where U is a continuous random variable in [0, 1]. A natural choice for U is the uniform distribution.

4.2 Selection of the copula family

Many different classes of parametric bivariate copulas have extensively been studied and reviewed by

Joe (2014). These include the Archimedean, elliptical, extreme value or max-id copula families that can

specify the dependence structure of the vector of signs. As the dependence is introduced by the copula

family, the type and the degree of the dependence between the signs depends on the choice of the copula.

The literature surrounding the goodness-of-fit of copulas is extensive and has been analyzed by Genest

et al. (2006), Genest et al. (2009), and Berg (2009), among many others. Genest et al. (2009) categorize

goodness-of-fit tests into three broad categories: procedures for testing particular dependence structures

such as Gaussian or Clayton family; procedures that may be used for any classes of copulas, but require a
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strategic choice for their implementation; and finally, the so-called “blanket tests”that apply to all classes

of copulas and require no strategic choice for their use. A simple procedure proposed by Joe (1997)

involves specifying the Akaike information critetion (AIC) to different copulas and using it as a copula

selection criterion, which is particularly attractive as it allows for the automation of the copula selection

process [see. Czado et al. (2012)]. The AIC specified to the copulas of, say, the first tree of the D-vine,

can be expressed as follows

AIC = −2
t∑
i=1

log ct,t+1(ûi,t, ûi,t+1; θ̂1,k) + 2l

for t = 1, . · · · , T − 1 and k = 1, · · · , T − 1, and where l is the number of parameters θ1,k. Panagiotelis

et al. (2012) suggest that while dependence structures such as tail dependence are weak in discrete data,

the choice of the copulas could still have a significant effect on the joint pmf of the signs. They considered

Gaussian, Clayton and Gumbel copulas in constructing the D-vines for Bernoulli margins by keeping the

marginal probabilities and dependence constant, and have found that in the case where the probabilities

of zero marginals and joint probabilities in the data is high, preference goes to the use of the Gumbel

copula over the other two alternatives.

Within the context of our work, the mediangale assumption (2) implies that the signs s(y1), · · · , s(yT )

conditional on X, and in turn û1, · · · , ûT exhibit serial nonlinear dependence. Thus, the issue with

specifying a copula-based model for the signs is that the distribution of the signs must imply an identity

correlation matrix, where independence is only sufficient for uncorrelatedness. The literature generally

deals with this issue by capturing the serial nonlinear dependence by imposing the identity correlation

matrix on a multivariate Student’s t distribution. Henceforth, we consider the “jointly symmetric”

copulas proposed by Oh and Patton (2016), where the latter can be constructed with any given (possibly

asymmetric) copula family. In addition, when they are combined with symmetric marginals, they ensure

an identity correlation matrix. A “jointly symmetric” copula is defined as follows

Definition 2 The n dimensional copula CJS, is jointly symmetric:

CJS (u1, · · · , un) =
1

2n

2∑
k1=0

· · ·
2∑

kn=0

(−1)R C(ũ1, · · · , ũi, · · · , ũn),

where R =
n∑
i=1

1{ki = 2}, and ũi =


1, ki = 0

ui, ki = 1

1− ui, ki = 2

.
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The general idea is that the average of mirror image rotations of a possibly asymmetric copula along each

axis generates a jointly symmetric copula [see Oh and Patton (2016)]. For instance, the marginals can

be assumed to possess standard normal distributions, while the nonlinear dependency is modeled using

jointly symmetric copulas.

Therefore, using the jointly symmetric copula family, the bivariate copulas can be evaluated by

considering

CJS
(
φt(st | X; β̂1), φt+1(st+1 | X; β̂1)

)
=

1

4

2∑
k1=0

2∑
k2=0

(−1)R C(φt(st | X; β̂1), φt+1(st+1 | X; β̂1))

where R =
n∑
i=1

1{ki = 2}, and ũi =


1, ki = 0

φi(.), ki = 1

1− φi(.), ki = 2

, ∀i ∈ {t, t+ 1}.

for t = 1, · · · , T − 1.

4.3 Truncated D-vines

Following Joe (2014), we refer to a D-vine as a p-truncated D-vine, if the copulas in the trees

Tp+1, · · · , TT are C⊥, where by definition

C⊥ (u1, · · · , un) =
T∏
t=1

ut, with (U1, · · · , UT ) ∼ U(0, 1),

implying U1 ⊥ U2 ⊥ · · · ⊥ UT . The POS-based tests constructed using the Markov assumption of order

one can be regarded as a special case of the PCC-POS based tests, whereby the former can be constructed

by a 1-truncated D-vine, which only depends on C12, C23, · · · , CT−1,T , or rather C12, Cσ133, · · · , , Cσ1TT

using a vine array representation, given the following array

− 12 23 34 · · · T − 1, T

− 13 | 2⊥ 24 | 3⊥ · · · T − 2, T | T − 1⊥

. . . · · · · · ·
...

− 1, T − 1 | S
¯
⊥
\j− 2, T | S

¯
⊥
\j+

− 1, T | S
¯
⊥
\j

−


, A =



1 1 2 3 · · · T − 1

2 1⊥ 2⊥ · · · T − 2⊥

. . . · · · · · ·
...

T − 2 1⊥ 2⊥

T − 1 1⊥

T


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Similarly, a 2-truncated D-vine, depends on the copulas C12, C23, · · · , CT−1,T and C13|2, C24|3, · · · , CT−2,T |T−1

or Cσ1tt for t = 2, · · · , T and Cσ2tt|σ1t
for t = 3, · · · , T using the vine array representation. Therefore, for

a p-truncated D-vine, (24) is modified to

Pt|1:t−1[s(ỹt) = s̃t | s(ỹ1) = s̃1, · · · , s(ỹt−1) = s̃t−1, X] = Pt|1:p[s(ỹt) = s̃t | s(ỹ1) = s̃1, · · · , s(ỹp) = s̃p, X]

=


2∏

l=p∧(t−1)

cσ̃ltt,|σ̃1t,··· ,σ̃t−1,t

× cσ̃ltt × Pt[s(ỹt) = s̃t | X],

(26)

for t− 1 ≥ p.

Corollary 2 Let Ã = (σ̃lt)1≤l≤t≤T be a D-vine array for the signs s(ỹ1), · · · , s(ỹT ), where the signs

{s(ỹt)}∞t=0 follow a Markov process of order p. Under assumptions (19) and (2), let H(β0) and H(β1) be

defined by (21) - (22),

SNT (β0 | β1) =
T∑
t=2

2∑
l=p∧(t−1)

ln cσ̃ltt,|σ̃1t,··· ,σ̃t−1,t
+

T∑
t=2

ln cσ̃1tt +
T∑
t=1

s(yt − f(xt−1,β0))ãt(β0 | β1) > c1(β0,β1),

where

ãt(β0 | β1) = ln

{
1− pt[xt−1,β0,β1 | X]

pt[xt−1,β0,β1 | X]

}
, pt[xt−1,β0,β1 | X] = Pt[εt ≤ f(xt−1,β0)−f(xt−1,β1) | X]

and suppose the constant c1(β0,β1) satisfies the constraint P [SNT (β0 | β1) > c1(β0,β1)] = α under

H(β0), with 0 < α < 1. Then the test that rejects H(β0) when

SNT (β0 | β1) > c1(β0,β1) (27)

is most powerful for testing H(β0) against H(β1) among level-α tests based on the signs
(
s(ỹ1), · · · , s(ỹT )

)′
.

5 Choice of the optimal alternative hypothesis

In this Section, we follow Dufour and Taamouti (2010) by first showing the analytical derivation of the

power envelope function of the PCC-POS-based tests. We then suggest using simulations as means of

approximating the said function, by showing the difficulty of inverting the latter to find the optimal

alternative. Thereafter, we propose an adaptive approach based on the split-sample technique to choose

an alternative which has a power function close to that of the power envelope.
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5.1 Power envelope of PCC-POS tests

Point-optimal tests trace out the power envelope (i.e. the maximum attainable power) for any given

testing problem [see King (1987)]. However, in practice the alternative hypothesis β1 is unknown and

a problem consists of finding an approximation for it, such that the power function is maximized and

is close to that of the power envelope. Following Dufour and Taamouti (2010) and Dufour and Jasiak

(2001), we propose an adaptive approach based on the split-sample technique to choose an alternative

β1 that yields the greatest power function and makes size control easier [see Dufour and Jasiak (2001)

and Dufour and Taamouti (2010) for an overview]. We follow Dufour and Taamouti (2010) by presenting

the analytical derivation of the power envelope of the PCC-POS tests for predictive regressions, which

can be purposed as a benchmark for comparing the power functions of the PCC-POS tests for different

sample splits.

We have shown in Section 3.2 that the PCC-POS tests are a function of β1. In other words,

SNT (β0 | β1) =

T∑
t=2

2∑
l=t−1

ln cσ̃ltt|σ̃1t,··· ,σ̃t−1,t
+

T∑
t=2

ln cσ̃1tt+

T∑
t=1

ln

{
1− pt[xt−1,β0,β1 | X]

pt[xt−1,β0,β1 | X]

}
s(yt−f(xt−1,β0)).

which in turn implies that its power function, say Π(β0,β1), is also a function of β1

Π(β0,β1) = P [SNT (β0 | β1) > c1(β0,β1) | H(β1)]

where c1(β0,β1) is the smallest constant that satisfies P [SNT (β0 | β1) > c1(β0,β1) | H(β0)] ≤ α,

and where α is an arbitrary significance level. Theorem 1 provides the theoretical results for the power

function of the PCC-POS tests.

Theorem 1 Under assumption (2) and and given model (19), and further under the condition that

s(ỹ1), · · · , s(ỹT ) conditional on X follow a Regularity Markov Type process (RMT hereafter), the power

function of SNT (β0 | β1) is given by

Π(β0,β1) = P [SNT (β0 | β1) > c1(β0,β1) | X] =
1

2
+

1

π

∫ ∞
0

Im{exp(iuc1(β0,β1))φSNT
(u)}

u
du

∀u ∈ R, i =
√
−1, and with Im{z} denoting the imaginary part of the complex number z. φSNT

(u) is

given by

φSNT
(u) =

T∏
t=1

(
EX
[
exp

(
iu

{
Rt,t−1 + ln

{
1− pt[xt−1,β0,β1 | X]

pt[xt−1,β0,β1 | X]

}
s(ỹt)

})]
+ ρt(u)

)
,
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where R1,0 = 0, Rt,t−1 =
2∑

l=t−1

ln cσ̃ltt|σ̃1t,··· ,σ̃t−1,t
+ ln cσ̃1tt for t = 2, · · · , T , such that for D-vine-array

Ã = (σ̃lt)1≤l≤t≤T , l = 2, · · · , T − 1 is the row with tree Tl, and column t has the permutation σ̃t−1 =

(σ̃1t, · · · , σ̃t−1,t) of the previously added variables, pt[xt−1,β0,β1 | X] = Pt[εt ≤ f(xt−1,β0)−f(xt−1,β1) |

X], S̃
¯ t−1 = s(yt−1 − f(xt−2,β0)), · · · , s(y1 − f(x0,β0)). Finally, c1(β0,β1) is the smallest constant that

satisfies P [SNT (β0 | β1) > c1(β0,β1) | H(β0)] ≤ α, where α is an arbitrary significance level.

Under the assumption that the signs follow an RMT-process, ρt(u) can be estimated using the results

from Theorem 2 of Heinrich (1982). Given that point-optimal tests are optimal at a specific point in

the alternative parameter space, the power envelope of the PCC-POS tests, say Π̄(β1), is obtained for

values of β, such that {β : β = β1,∀β1 ∈ R(k+1)}. Finding values of β1 for a PCC-POS test at level

α, with a power function that is close to the power envelope can be achieved by inverting the power

envelope function. However, in a much simpler case of POS tests for i.n.i.d data, Dufour and Taamouti

(2010) show that the inversion of the power function is not a straightforward task and obtaining an exact

solution is not feasible. Therefore, simulations are used as means of approximating the power envelope

function and finding the optimal alternative for the PCC-POS test.

5.2 Split-sample technique for choosing the optimal alternative

As noted earlier, the power function of the PCC-POS test statistic depends on the alternative β1,

which in practice is unknown and needs to be approximated. To make size control easier and to choose

an approximation to β1 such that the power function of the test statistic is close to that of the power

envelope, we follow Dufour and Taamouti (2010) by proposing an adaptive approach based on the split-

sample technique for choosing the alternative. For an extensive review of adaptive statistical methods,

we refer the reader to O’Gorman (2004). Furthermore, the application of the split-sample technique in

parametric settings can be studied by consulting Dufour and Taamouti (2003) and Dufour et al. (2008).

The split-sample technique involves splitting a sample of size T into two independent subsamples, say

T1 and T2, such that T = T1 + T2. The first subsample is then used to estimate the alternative β1, while

the other is purposed for computing the PCC-POS test statistic. Assuming that f(xt−1,β) = x′t−1β, the

alternative β1 can be estimated using OLS

β̂(1) = (X ′(1)X(1))
−1X ′(1)y(1).

We provide a caveat that the OLS estimator is sensitive to extreme outliers, which motivates the use

of robust estimators [see. Maronna et al. (2019) for a review of robust estimators]. Using β̂(1) and the
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Figure 2: Power comparisons: different split-samples. Normal error distributions with different values of

ρ in (33) and θ = 0.9 in (32)

0 0.1 0.2 0.3 0.4 0.5

Parameter value

0

10

20

30

40

50

60

70

80

90

100

P
o

w
e

r

Normal distribution, =0.9, =0

PE

10% SS-PCC-POS

30% SS-PCC-POS

50% SS-PCC-POS

70% SS-PCC-POS

0 0.1 0.2 0.3 0.4 0.5

Parameter value

0

10

20

30

40

50

60

70

80

90

100

P
o

w
e

r

Normal distribution, =0.9, =0.9

PE

10% SS-PCC-POS

30% SS-PCC-POS

50% SS-PCC-POS

70% SS-PCC-POS

Note: These figures compare the power envelope the PCC-POS test statistic using different split-samples:

10%, 30%, 50%, 70%. “PE”refers to the power envelope of the PCC-POS test.

observations in the second independent subsample, we compute the test-statistic as follows

SNT (β0 | β(1)) =

T∑
t=T1+2

2∑
l=t−1

ln cσ̃ltt|σ̃(T1+1)t,··· ,σ̃t−1,t
+

T∑
t=T1+2

ln cσ̃(T1+1)tt+

=

T∑
t=T1+1

ln

{
1− pt[xt−1,β0,β(1) | X]

pt[xt−1,β0,β(1) | X]

}
s(yt − x′t−1β0).

where for t = T1 + 2, · · · , T and D-vine-array Ã = (σ̃lt)1≤l≤t≤n, l = T1 + 1, · · · , T − 1 is the row with

tree Tl, and column t has the permutation σ̃t−1 = (σ̃(T1+1)t, · · · , σ̃t−1,t) of the previously added variables,

pt[xt−1,β0,β(1) | X] = Pt[εt ≤ x′t−1(β0−β1) | X], and S̃
¯t−1 = s(yt−1−x′t−2β0), · · · , s(yT1+2−x′T1+1β0).

The choices for the subsamples T1 and T2 can be arbitrary. However, our simulations show that the

proportion of the observations retained for estimating the alternative and in turn for computing the

PCC-POS test statistic has an impact on the power of the test. We find that the power function of the

split-sample PCC-POS test (SS-PCC-POS test hereafter) is closest to that of the power envelope, when

a relatively small number of observations is retained for estimating the alternative, with the rest used for

computing the test statistic - findings that are in line with Dufour and Taamouti (2010). Specifically, by

considering all the DGPs in our simulations study, we find that the subsamples T1 and T2 must in turn

contain roughly 10% and 90% of the observations in the entire sample respectively.
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Figure 3: Power comparisons: different split-samples. Cauchy error distributions with different values of

ρ in (33) and θ = 0.9 in (32)
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Note: These figures compare the power envelope the PCC-POS test statistic using different split-samples:

10%, 30%, 50%, 70%. “PE”refers to the power envelope of the PCC-POS test.

Figure 4: Power comparisons: different split-samples. Student’s t error distributions with 2 degrees of

freedom [i.e t(2)] with different values of ρ in (33) and θ = 0.9 in (32)
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Note: These figures compare the power envelope the PCC-POS test statistic using different split-samples:

10%, 30%, 50%, 70%. “PE”refers to the power envelope of the PCC-POS test.
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Figure 5: Power comparisons: different split-samples. Normal error distributions with break in variance,

with different values of ρ in (33) and θ = 0.9 in (32)
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Note: These figures compare the power envelope the PCC-POS test statistic using different split-samples:

10%, 30%, 50%, 70%. “PE”refers to the power envelope of the PCC-POS test.

6 PCC-POS confidence regions

In this Section, we lay out the theoretical framework for building confidence regions for a vector

(sub-vector) of the unknown parameters β, say Cβ(α), at a given significance level α, using the proposed

PCC-POS tests. Consider model (19) such that f(xt−1,β) = x′t−1β. Suppose we wish to test the null

hypothesis (21) against the alternative hypothesis (22). Formally, this implies finding all the values of

β0 ∈ Rk such that

SNT (β0 | β1) =

T∑
t=2

2∑
l=t−1

ln cσ̃ltt,|σ̃1t,··· ,σ̃t−1,t
+

T∑
t=2

ln cσ̃1tt +

T∑
t=1

s(yt − β′0 − xt−1)ãt(β0 | β1) < c1(β0,β1).

(28)

where the critical value is given by the smallest constant c(β0,β1) such that

P [SNT (β0|β1) > c(β0,β1) | β = β0] ≤ α

Thus, the confidence region of the vector of parameters β can be defined as follows:

Cβ(α) = {β0 : SNT (β0|β1) < c(β0,β1)|P [SNT (β0|β1) > c(β0,β1) | β = β0] ≤ α} .
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Given the confidence region Cβ(α), confidence intervals for the components and sub-vectors of vector β

can be derived using the projection techniques [see Dufour and Taamouti (2010) and Coudin and Dufour

(2009)]. Confidence sets in the form of transformations T of β ∈ Rm, for m ≤ (k+ 1), say T (Cβ(α)), can

easily be found using these techniques. Since, for any set Cβ(α)

β ∈ Cβ(α) =⇒ T (β) ∈ T (Cβ(α)), (29)

we have

P [β ∈ Cβ(α)] ≥ 1− α =⇒ P [T (β) ∈ T (Cβ(α))] ≥ 1− α (30)

where

T (Cβ(α)) = {δ ∈ Rm : ∃β ∈ Cβ(α), T (β) = δ}.

From (29) and (30) , the set T (Cβ(α)) is a conservative confidence set for T (β) with level 1−α. If T (β)

is a scalar, then we have

P [inf{T (β0), for β0 ∈ Cβ(α)} ≤ T (β) ≤ sup{T (β0), for β0 ∈ Cβ(α)}] > 1− α.

7 Monte Carlo study

In this Section, we assess the performance of the proposed 10% SS-PCC-POS tests (in terms of size

control and power) by comparing it to other tests that are intended to be robust against non-standard

distributions and heteroskedasticity of unknown form. We consider DGPs under different distributional

assumptions and heteroskedasticities. For each DGP, we further consider different correlation coefficients

between the errors of the predictive regression and the disturbances of the regressors. In the first

subsection, the DGPs are formally introduced, and in the following subsection, the performance of the

proposed 10% SS-PCC-POS tests are compared to that of the other tests considered in our study.

7.1 Simulation setup

We assess the performance of the proposed 10% SS-PCC-POS tests in terms of size and power, by

considering various DGPs with different symmetric and asymmetric distributions and forms of heteroskedasticity.

The DGPs under consideration are supposed to mimic different scenarios that are often encountered in

practical settings. The performance of the 10% SS-PCC-POS tests is compared to that of a few other
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tests, by considering the following linear predictive regression model

yt = βxt−1 + εt (31)

where β is an unknown parameter and

xt = θxt−1 + ut (32)

where θ = 0.9 and

ut = ρεt + wt
√

1− ρ2 (33)

for ρ = 0, 0.1, 0.5, 0.9 and εt and wt are assumed to be independent. The initial value of x is given by:

x0 = w0√
1−θ2

and wt are generated from N(0, 1). The errors εt are i.n.i.d and are categorized by two groups

in our simulation study. In the first group, we consider DGPs where the errors εt possess symmetric and

asymmetric distributions:

1. normal distribution: εt ∼ N(0, 1);

2. Cauchy distribution: εt ∼ Cauchy;

3. Student’s t distribution with two degrees of freedom: εt ∼ t(2);

4. Mixture of Cauchy and normal distributions: εt ∼| εCt | −(1− st) | εNt |, where εCt follows Cauchy

distribution, εNt follows N(0, 1) distribution, and

P (st = 1) = P (st = 0) =
1

2

The second group of DGPs represents different forms of heteroskedasticity:

5. break in variance:

εt ∼

 N(0, 1) for t 6= 25
√

1000N(0, 1) for t = 25
;

6. GARCH(1, 1) plus jump variance:

σ2
ε(t) = 0.00037 + 0.0888ε2

t−1 + 0.9024σ2
ε(t− 1) ,

εt ∼

 N(0, σ2
ε(t)) for t 6= 25

50N(0, σ2
ε(t)) for t = 25

;
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We consider the problem of testing the null hypothesis H0 : β = 0. Our Monte Carlo simulations compare

the size and power of the 10%-PCC-POS test to those of t-test, t-test based on White (1980) variance-

correction (WT-test hereafter), and the sign-based test proposed by Campbell and Dufour (1995). Due to

computational constraints, we perform only M1 = 999 simulations to evaluate the probability distribution

of the 10% SS-PCC-POS test statistic and M2 = 1, 000 iterations for approximating the power functions

of the proposed PCC-POS test and other tests. In all simulations, we consider a sample size of T = 50.

As the sign-based statistic of Campbell and Dufour (1995) has a discrete distribution, it is not possible

to obtain test with a precise size of 5%; therefore, the size of the test is 5.95% for T = 50.

7.2 Simulation results

The results of the Monte Carlo study corresponding to DGPs described in Section 7.1 are presented

in figures 6-11. These figures compare the performance of the 10% SS-PCC-POS test in terms of size and

power, to those of the t-test, t-test based on White’s (1980) variance-correction, as well as the sign-based

procedure proposed by Dufour and Taamouti (2010). The results are described in detail below.

First, figure 6 considers the case where the error terms εt are normally distributed. At first glance,

we note that all tests control size. Evidently, our test is outperformed by the t-test, as well as the t-test

based on White’s (1980) variance-correction. The former is expected, since for normally distributed error

terms, the t-test is the most powerful test. However, the 10% SS-PCC-POS test outperforms the sign-

based procedure proposed by Campbell and Dufour (1995) [CD (1995) hereafter]. Furthermore, changing

the correlation coefficient ρ does not seem to lead to visually significant differences in the performance of

the tests.

Second, figure 7 presents the results of the performance of the aforementioned tests, when the errors

εt follows Cauchy distribution. It is evident that the 10% SS-PCC-POS test outperforms all other tests.

Moreover, the t-test and WT-test do not possess much power for low correlation coefficient (0 and 0.1)

values, ρ. However, as the correlation between ut and wt increases, the gap between the power functions

narrows significantly.

Third, in figures 8 and 9, we have considered the cases where the errors in turn follow t(2) and mixture

distributions. In the former case of t(2) distributed errors, the 10% SS-PCC-POS test outperforms the

rest; however, for almost all correlation coefficients ρ, the gap between the power functions is rather small,

albeit it is narrowest for ρ = 0.9. In the case of errors with mixture distribution, our 10% SS-PCC-POS

test is still the most powerful test. On other hand, it is evident that the t-test and WT-test do not

possess much power for small values (0 and 0.1) of correlation coefficient ρ. However, the power functions

increase and converge to those of the other tests, as the correlation increases.
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An interesting observation is the stark contrast between the power of the 10% SS-PCC-POS test and

the t-test, when the errors follow the Cauchy, t(2) and normal distributions respectively. The Cauchy

and t(2) distributions possess heavy tails, in the presence of which the standard error of the regression

coefficients is inflated, which in turn leads to low power when the mean is used as a measure of central

tendency. For instance, the Cauchy distribution has the heaviest tails among the considered DGPs, as a

result of which the t-test and WT-test have very low power. By noting that a Student’s t distribution

with ν degrees of freedom converges to the Cauchy distribution for ν = 1 and to the normal distribution

as ν → ∞, it would be interesting to see at which degree of freedom the 10% SS-PCC-POS test is

outperformed by the t-test and WT-tests. Figures 12-15 suggest that for different values of ρ in (33) the

t-test and WT test outperform the 10% SS-PCC-POS test for ν = 4. Interestingly, figure 16 shows that

the tails of the t(2) distribution are substantially heavier than that of the t(4), which may explain the

transition.

Finally, in figures 8 and 9, the errors are normally distributed with different forms of heteroskedasticity.

In the first case [see figure 8], there is a break in variance, in the presence of which our test outperforms

the other tests. Furthermore, the t-test and WT-test do not possess any power for low correlation (0

and 0.1) values of ρ. However, with increasing values of the correlation coefficient the power curves of

all test appear to converge. In the other case [see figure 9], the variance follows a GARCH(1,1) model

with a jump in variance. In this case, our test is only outperformed by the CD (1995) test, which has

the greatest power. Nevertheless, the 10% SS-PCC-POS test still outperforms the t-test and WT-test.
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Figure 6: Power comparisons: different tests. Normal error distributions with different values of ρ in (33)

and θ = 0.9 in (32)

0 0.1 0.2 0.3 0.4 0.5

Parameter value

0

10

20

30

40

50

60

70

80

90

100

P
o

w
e

r

Normal distribution, =0.9, =0

10% SS-PCC-POS test

CD (1995) test

T-test

WT-test

0 0.1 0.2 0.3 0.4 0.5

Parameter value

0

10

20

30

40

50

60

70

80

90

100

P
o

w
e

r

Normal distribution, =0.9, =0.1

10% SS-PCC-POS test

CD (1995) test

T-test

WT-test

0 0.1 0.2 0.3 0.4 0.5

Parameter value

0

10

20

30

40

50

60

70

80

90

100

P
o

w
e

r

Normal distribution, =0.9, =0.5

10% SS-PCC-POS test

CD (1995) test

T-test

WT-test

0 0.1 0.2 0.3 0.4 0.5

Parameter value

0

10

20

30

40

50

60

70

80

90

100

P
o

w
e

r

Normal distribution, =0.9, =0.9

10% SS-PCC-POS test

CD (1995) test

T-test

WT-test

Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-PCC-POS

test] with: (1) the t-test; (2) the sign-based test proposed by Campbell and Dufour (1995) [CD (1995)

test]; and (3) the t-test based on White’s (1980) variance correction [WT-test].
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Figure 7: Power comparisons: different tests. Cauchy error distributions with different values of ρ in (33)

and θ = 0.9 in (32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-PCC-POS

test] with: (1) the t-test; (2) the sign-based test proposed by Campbell and Dufour (1995) [CD (1995)

test]; and (3) the t-test based on White’s (1980) variance correction [WT-test].
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Figure 8: Power comparisons: different tests. Student’s t error distributions with 2 degrees of freedom

[i.e t(2)], with different values of ρ in (33) and θ = 0.9 in (32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-PCC-POS

test] with: (1) the t-test; (2) the sign-based test proposed by Campbell and Dufour (1995) [CD (1995)

test]; and (3) the t-test based on White’s (1980) variance correction [WT-test].
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Figure 9: Power comparisons: different tests. Mixture error distributions with different values of ρ in

(33) and θ = 0.9 in (32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-PCC-POS

test] with: (1) the t-test; (2) the sign-based test proposed by Campbell and Dufour (1995) [CD (1995)

test]; and (3) the t-test based on White’s (1980) variance correction [WT-test].
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Figure 10: Power comparisons: different tests. Normal error distributions with break in variance, with

different values of ρ in (33) and θ = 0.9 in (32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-PCC-POS

test] with: (1) the t-test; (2) the sign-based test proposed by Campbell and Dufour (1995) [CD (1995)

test]; and (3) the t-test based on White’s (1980) variance correction [WT-test].
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Figure 11: Power comparisons: different tests. Normal error distributions GARCH(1,1) plus jump

invariance, with different values of ρ in (33) and θ = 0.9 in (32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-PCC-POS

test] with: (1) the t-test; (2) the sign-based test proposed by Campbell and Dufour (1995) [CD (1995)

test]; and (3) the t-test based on White’s (1980) variance correction [WT-test].
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8 Conclusion

In this paper, we extend the exact point-optimal sign-based procedures proposed by Dufour and

Taamouti (2010) to a predictive regression framework. We showed that by implementing the procedures

for pair copula constructions of discrete data, we can derive exact and distribution-free sign-based

statistics for dependent data in the context of linear and nonlinear predictive regressions, without

imposing any potentially restrictive assumptions. The proposed tests are valid, distribution-free and

robust against heteroskedasticity of unknown form. Furthermore, they may be inverted to produce a

confidence region for the vector (sub-vector) of parameters of the regression model.

We further suggest a sequential estimation strategy for the D-vine PCC and discuss the choice of the

copula family. As the proposed sign statistics depend on the alternative hypothesis, another problem

consists of finding an alternative that controls size and maximizes the power. In line with Dufour and

Taamouti (2010), we find that when 10% of sample is used to estimate the alternative and the rest to

compute the test-statistic, our procedures have the optimal power and are closest to the power envelope.

Finally, we present a Monte Carlo study to assess the performance of the proposed tests in terms of

size control and power, by comparing them to some other tests that are intended to be robust against

heteroskedasticity. We consider a variety of different DGPs and we show that the 10% split-sample

point-optimal sign-test based on pair copula constructions is superior to the t-test, Campbell and Dufour

(1995) sign-based test, and the t-test based on White (1980) variance correction in most cases.
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9 Appendix

Derivation of the Neyman-Pearson type sign-based statistic for testing the unpredictability

hypothesis for T ≤ 3.

The likelihood function of sample in terms of signs s(y1), · · · , s(yT ) conditional on X is

L (U(T ),β, X) = P [s(y1) = s1, · · · , s(yT ) = sT | X] =
T∏
t=1

P
[
s(yt) = st | S

¯t−1 = s
¯t−1, X

]
,

for

S
¯0 = {∅} , S

¯t−1 = {s(y1), · · · , s(yt−1)} , for t ≥ 2,

and

P [s(y1) = s1 | S
¯0 = s

¯0, X] = P [s(y1) = s1 | X] ,

where each st, for 1 ≤ t ≤ T , takes two possible values 0 and 1. Given model (1) and assumption (2),

under the null hypothesis of unpredictability, the signs s(εt), for 1 ≤ t ≤ T , are i.i.d conditional on X

according to Bi(1, 0.5). Then, the signs s(yt), for 1 ≤ t ≤ T , will also be i.i.d conditional on X with

P [s(yt) = 1 | X] = P [s(yt) = 0 | X] =
1

2
, for t = 1, · · · , T.

Consequently, under H0

L0 (U(T ),0, X) =
T∏
t=1

P [s(yt) = st | X] =

(
1

2

)T

and under H1 we have

L1 (U(T ),β1, X) =

T∏
t=1

P
[
s(yt) = st | S

¯t−1 = s
¯t−1, X

]
where now, for t = 1, · · · , T,

yt = β′1xt−1 + εt

The log-likelihood ratio is given by

ln

{
L1 (U(T ),β1, X)

L0 (U(T ),0, X)

}
=

T∑
t=1

ln
{
P
[
s(yt) = st | S

¯t−1 = s
¯t−1, X

]}
− T ln

{
1

2

}
.

According to Neyman-Pearson lemma [see e.g. Lehmann (1959), page 65], the best test to test H0 against
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H1, based on s(y1), · · · , s(yT ), rejects H0 when

SLT (β1) = ln

{
L1 (U(T ),β1, X)

L0 (U(T ),0, X)

}
≥ c

or when
T∑
t=1

ln
{
P
[
s(yt) = st | S

¯t−1 = s
¯t−1, X

]}
≥ c1 ≡ c+ T ln

(
1

2

)
,

The critical value, say c1 is given by the smallest constant c1 such that

P

(
T∑
t=1

ln
{
P
[
s(yt) = st | S

¯t−1 = s
¯t−1, X

]}
> c1 | H0

)
≤ α.

We have

ln {P [s(y1) = s1 | S
¯0 = s

¯0, X]} = ln {P [s(y1) = s1 | X]}

= s(y1) lnP [y1 ≥ 0 | X] + (1− s(y1)) lnP [y1 < 0 | X]

= s(y1) ln

{
P [y1 ≥ 0 | X]

P [y1 < 0 | X]

}
+ lnP [y1 < 0 | X]

= s(y1) ln

{
P [ε1 ≥ −β′1xt−1 | X]

P [ε1 < −β′1xt−1 | X]

}
+ lnP [ε1 < −β′1xt−1 | X],

and for t = 2, · · · , T , with T ≤ 3 we have

T∑
t=2

lnP
[
s(yt) = st | S

¯t−1 = s
¯t−1, X

]
=

T∑
t=2

ln

(
P [s(yt) = st, s(yt−1) = st−1 | S

¯t−2 = s
¯t−2, X]

P [s(yt−1) = st−1 | S
¯t−2 = s

¯t−2, X]

)

=

T∑
t=2

ln

( ∑
kt=0,1

∑
kt−1=0,1

(−1)kt+kt−1

=×
{
P [s(yt) ≤ st − kt, s(yt−1) ≤ st−1 − kt−1 | S

¯t−2 = s
¯t−2, X]

}
=/P [s(yt−1) = st−1 | S

¯t−2 = s
¯t−2, X]

)
{
P
[
s(yt) = st | S

¯t−1 = s
¯t−1

]}
=

T∑
t=2

ln

( ∑
kt=0,1

∑
kt−1=0,1

(−1)kt+kt−1

=×
{
Cs(yt),s(yt−1)|S

¯t−2

(
Fs(yt)|S

¯t−2
(st − kt | s

¯t−2, X),

= Fs(yt−1)|S
¯t−2

(st−1 − kt−1 | s
¯t−2, X)

)}
=/P [s(yt−1) = st−1 | S

¯t−2 = s
¯t−2, X]

)
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=

T∑
t=2

ln

{ ∑
kt=0,1

∑
kt−1=0,1

(−1)kt+kt−1

=×
{
Cs(yt),s(yt−1)|S

¯t−2

(
Fs(yt)|S

¯t−2
(st − kt | s

¯t−2, X),

= Fs(yt−1)|S
¯t−2

(st−1 − kt−1 | s
¯t−2, X)

)}}

=−
T∑
t=2

ln
{
P [s(yt−1) = st−1 | S

¯t−2 = s
¯t−2, X]

}
Each argument Fs(yt)|S

¯t−2
(st−kt | s

¯t−2, X) and Fs(yt−1)|S
¯t−2

(st−1−kt−1 | s
¯t−2, X) in the copula expression

above can be evaluated as follows

Fs(yt)|S
¯t−2

(st − kt | s
¯t−2, X) ={

Cs(yt),s(yt−2)|S
¯t−3

(F (st − kt | s
¯t−3, X), F (st−2 | s

¯t−3, X))

−Cs(yt),s(yt−2)|S
¯t−3

(F (st − kt | s
¯t−3, X), F (st−2 − 1 | s

¯t−3, X))
}
/P [s(yt−2) = st−2 | S

¯t−3 = s
¯t−3, X]

and similarly

Fs(yt−1)|S
¯t−2

(st−1 − kt−1 | s
¯t−2, X) ={

Cs(yt−2),s(yt−1)|S
¯t−3

(F (st−2 | s
¯t−3, X), F (st−1 − kt−1 | s

¯t−3, X))

−Cs(yt−2),s(yt−1)|S
¯t−3

(F (st−2 − 1 | s
¯t−3, X), F (st−1 − kt−1 | s

¯t−3, X))
}
/P [s(yt−2) = st−2 | S

¯t−3 = s
¯t−3, X]

Thus, for T ≤ 3 the Neyman-Pearson type test statistic based on s(y1), · · · , s(yT ), can be expressed as

SLT (β1) = s(y1) ln

{
P [ε1 ≥ −β′1xt−1 | X]

P [ε1 < −β′1xt−1 | X]

}
+ lnP [ε1 < −β′1xt−1 | X] +

T∑
t=2

ln

{ ∑
kt=0,1

∑
kt−1=0,1

(−1)kt+kt−1

=×
(
Cs(yt),s(yt−1)|S

¯t−2

(
Fs(yt)|S

¯t−2
(st − kt | s

¯t−2, X), Fs(yt−1)|S
¯t−2

(st−1 − kt−1 | s
¯t−2, X)

))}

=−
T∑
t=2

ln
{
P [s(yt−1) = st−1 | S

¯t−2 = s
¯t−2, X]

}
− n ln

{
1

2

}

Vine decomposition in the continuous case.

In Section 4, it is shown that the signs s(y1), · · · , s(yT ) may have a continuous extension with a

perturbation in [0, 1] [see Denuit and Lambert (2005)]. This can be achieved by employing a transformation

of the form s∗(yt) = s(yt)+U−1 for t = 1, · · · , T , where a natural choice for U is the uniform distribution.
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Thus, for {s∗(yt) ∈ R, t = 1, · · · , T} consider the continuous equivalent of the conditional probability mass

function (11) - i.e. the conditional density function. Further, by letting S
¯
∗
t−1 be the continuous extension

of S
¯t−1, the conditional density function may be expressed as

f
s∗(yt)|S

¯
∗\j
t−1∪s∗(yj)

=
f
s∗(yt),s∗(yj)|S

¯
∗\j
t−1

f
s∗(yj)|S

¯
∗\j
t−1

. (34)

From the Theorem of Sklar (1959), we know that

f
s∗(yt),s∗(yj)|S

¯
∗\j
t−1

(s∗t , s
∗
j | s¯

∗\j
t−1, X) = c

s∗(yt),s∗(yj)|S
¯
∗\j
t−1

(
F
s∗(yt)|s

¯
∗\j
t−1

(s∗t | s¯
∗\j
t−1, X), F

s∗(yj)|S
¯
∗\j
t−1

(s∗j | s¯
∗\j
t−1, X)

)
×=f

s∗(yt)|S
¯
∗\j
t−1

f
s∗(yj)|S

¯
∗\j
t−1

,

(35)

where c() is the copula density function. Thus,

f
s∗(yt)|S

¯
∗\j
t−1∪s∗(yj)

= c
s∗(yt),s∗(yj)|S

¯
∗\j
t−1

(
F
s∗(yt)|s

¯
∗\j
t−1

(s∗t | s¯
∗\j
t−1, X), F

s∗(yj)|S
¯
∗\j
t−1

(s∗j | s¯
∗\j
t−1, X)

)
f
s∗(yt)|S

¯
∗\j
t−1

, (36)

with

c
s∗(yt),s∗(yj)|S

¯
∗\j
t−1

(
F
s∗(yt)|S

¯
∗\j
t−1

(s∗t | s¯
∗\j
t−1, X), F

s∗(yj)|S
¯
∗\j
t−1

(s∗j | s¯
∗\j
t−1, X)

)
=

c
s∗(yt),s∗(yj)|S

¯
∗\j
t−1

(F
s∗(yt)|S

¯
∗\j
t−1

(s∗t | s¯
∗\j
t−1, X)

∂2C
s∗(yt),s∗(yj)|S

¯

∗\j
t−1

(
F
s∗(yt)|S¯

∗\j
t−1

(s∗t |s¯
∗\j
t−1,X),F

s∗(yj)|S
¯

∗\j
t−1

(s∗j |s¯
∗\j
t−1,X)

)
∂F

s∗(yt)|S¯
∗\j
t−1

(
s∗t |s¯
∗\j
t−1,X

)
∂F

s∗(yj)|S
¯

∗\j
t−1

(
s∗j |s¯
∗\j
t−1,X

)
(37)

can express (34), and the arguments of the copulas, say, F
s∗(yt)|S

¯
∗\j
t−1

(s∗t | s¯
∗\j
t−1, X) are obtained using the

expression by Joe (1996), such that

F
s∗(yt)|S

¯
∗\j
t−1

(s∗t | s¯
∗\j
t−1, X) =

∂C
s∗(yt),s∗(yi)|S

¯
∗\j,i
t−1

(
F
s∗(yt)|S

¯
∗\j,i
t−1

(s∗t | s¯
∗\j,i
t−1 , X), F

s∗(yi)|S
¯
∗\j,i
t−1

(s∗i | s¯
∗\j,i
t−1 , X)

)
∂F

s∗(yi)|S
¯
∗\j,i
t−1

(s∗i | s¯
∗\j,i
t−1 , X)

.

(38)

Therefore, when the data is continuous, the marginals in the copula expressions of, say, the third tree,

Ft|t+1,t+2 for t = 1, · · · , T − 2 and Ft+3|t+1,t+2 for t = 1, · · · , T − 3 are obtained by

Ft|t+1,t+2 =
∂Ct,t+1|t+2(Ft|t+2(s∗t | s∗t+2, X), Ft+1|t+2(s∗t+1 | s∗t+2, X))

∂Ft+1|t+2(s∗t+1 | s∗t+2, X)
, (39)
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where Ft+3|t+1,t+2 is obtained in a similar way.

Proof of Proposition 1.

The likelihood function of the sample in terms of signs s(y1), · · · , s(yT ) conditional on X is given by

L (U(T ),β, X) = P [s(y1) = s1, · · · , s(yT ) = sT | X]

where each st, for 1 ≤ t ≤ T , takes two possible values 0 and 1. Given model (1) and assumption (2),

under the null hypothesis the signs s(εt), for 1 ≤ t ≤ T , are i.i.d conditional on X according to Bi(1, 0.5).

Then, the signs s(yt), for 1 ≤ t ≤ T , will also be i.i.d conditional on X

P [s(yt) = 1 | X] = P [s(yt) = 0 | X] =
1

2
, for t = 1, · · · , T.

Consequently, under H0 we have

L0 (U(T ),0, X) =
T∏
t=1

P [s(yt) = st | X] =

(
1

2

)T

and under H1 the likelihood function conditional on X can be expressed as

L1 (U(T ),β1, X) = P1[s(y1) = s1 | X]×
T∏
t=2

Pt|1:t−1[s(yt) = st | s(y1) = s1 : s(yt−1) = st−1, X].

which can further be decomposed using the D-vine array A = (σlt)1≤l≤t≤T to obtain

L1 (U(T ),β1, X) = P1[s(y1) = s1 | X]×
T∏
t=2

2∏
l=t−1

cσltt,|σ1t,··· ,σt−1,t
× cσ1tt × Pt[s(yt) = st | X]

where now for t = 1, · · · , T,

yt = β′1xt−1 + εt

Under assumption (1) and (2), the likelihood function conditional on X, under the alternative hypothesis

can be expressed as

L1 (U(T ),β1, X) =
(
1− P1[ε1 < −β′1x0 | X]

)s(y1) × P1[ε1 < −β′1x0 | X]1−s(y1)

=×
T∏
t=2

2∏
l=t−1

cσltj,|σ1t,··· ,σt−1,t
× cσ1tt ×

(
1− Pt[εt < −β′1xt−1 | X]

)s(yt)
=× Pt[εt < −β′1xt−1 | X]1−s(yt)
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The log-likelihood ratio is given by

ln

{
L1 (U(T ),β1, X)

L0 (U(T ),0, X)

}
= s(y1) ln

{
1− P1[ε1 < −β′1x0 | X]

P1[ε1 < −β′1x0 | X]

}
+ ln

(
1− P1[ε1 < −β′1x0 | X]

)
= +

T∑
t=2

2∑
l=t−1

ln cσltt,|σ1t,··· ,σt−1,t
+

T∑
t=2

ln ca1tt +
T∑
t=2

s(yt) ln

{
1− Pt[εt < −β′1xt−1 | X]

Pt[εt < −β′1xt−1 | X]

}

= +
T∑
t=2

ln
(
1− Pt[εt < −β′1xt−1 | X]

)
− T ln

(
1

2

)

According to Neyman-Pearson Lemma [see e.g. Lehmann (1959), page 65], the best test for testing H0

against H1, based on s(y1), · · · , s(yT ), rejects H0 when

ln

{
L1 (U(T ),β1, X)

L0 (U(T ),0, X)

}
≥ c

or when

ln

{
L1 (U(T ),β1, X)

L0 (U(T ),0)

}
=

T∑
t=2

2∑
l=t−1

ln cσltt,|σ1t,··· ,σt−1,t
+

T∑
t=2

ln cσ1tt

= +

T∑
t=1

st ln

{
1− Pt[εt < −β′1xt−1 | X]

Pt[εt < −β′1xt−1 | X]

}
> c1(β1)

The critical value, say c1(β1) is given by the smallest constant c1(β1) such that

P

(
ln

{
L1 (U(T ),β1, X)

L0 (U(T ),0, X)

}
> c1(β1) | H0

)
≤ α.

Algorithm for the likelihood function of the signs under the alternative hypothesis.

In this Section, we adapt the algorithm for the joint pmf for D-vine for discrete variables of Panagiotelis

et al. (2012) and Joe (2014) to the context of our study. Let U(n) = (s(y1), s(y2), · · · , s(yT ))′ be a binary

valued T -vector. Furthermore, for a vector of integers i, let Si = {s(yi), i ∈ i}, where si is a mass point

of Si and sg is a mass point of s(yg). Let

F+
g|i := P [s(yg) ≤ sg | Si = si, X] , F−g|i := P [s(yg) < sg | Si = si, X] ,

fg|i := P [s(yg) = sg | Si = si, X].

noting that when i = {∅}, these conditional probabilities, correspond to marginal probabilities. Furthermore,
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let Cgh|i be a bivariate copula for the conditional CDFs Fg|i and Fh|i, and denote

C++
gh|i := Cgh|i

(
F+
g|i, F

+
h|i

)
, C+−

gh|i := Cgh|i

(
F+
g|i, F

−
h|i

)
,

C−+
gh|i := Cgh|i

(
F−g|i, F

+
h|i

)
, C−−gh|i := Cgh|i

(
F−g|i, F

−
h|i

)
.

The main elements of the algorithm is the following recursions:

(I) F+
j−t|(j−t+1):(j−1) =

[
C++
j−t,j−1|(j−t+1):(j−2) − C

+−
j−t,j−1|(j−t+1):(j−2)

]
/fj−1|(j−t+1):(j−2);

(II) F−j−t|(j−t+1):(j−1) =
[
C−+
j−t,j−1|(j−t+1):(j−2) − C

−−
j−t,j−1|(j−t+1):(j−2)

]
/fj−1|(j−t+1):(j−2);

(III) fj−t|(j−t+1):(j−1) = F+
j−t|(j−t+1):(j−1) − F

−
j−t|(j−t+1):(j−1);

(IV) F+
j|(j−t+1):(j−1) =

[
C++
j−t+1,j|(j−t+2):(j−1) − C

−+
j−t+1,j|(j−t+2):(j−1)

]
/fj−t+1|(j−t+2):(j−1);

(V) F−j|(j−t+1):(j−1) =
[
C+−
j−t+1,j|(j−t+2):(j−1) − C

−−
j−t+1,j|(j−t+2):(j−1)

]
/fj−t+1|(j−t+2):(j−1);

(VI) fj|(j−t+1):(j−1) = F+
j|(j−t+1):(j−1) − F

−
j|(j−t+1):(j−1);

(VII) The values based on Cj−t,j|(j−t+1):(j−1) is computed;

(VIII) t is incremented by 1 and back to (I).

The identity employed in the recursions is

P [s(yg) ≤ sg | s(yh) = sh,Si = si, X] =

P [s(yg) ≤ sg | s(yh) = sh,
P [s(yg)≤sg ,s(yh)≤sh|Si=si,X]−P [s(yg)≤sg ,s(yh)<sh|Si=si,X]

P [s(yh)=sh|Si=si,X] .

The algorithm is as follows

1. Input sT = (s1, · · · , sT ).

2. Allocate an T × T matrix π, where πtj = f(j−t+1):j for t = 1, · · · , T and j = t + 1, · · · , T and the

likelihood function P [s(y1) = s1, · · · , s(yT ) = sT ] under the alternative will appear as πTT .

3. Allocate C++, C+−, C−+, C−−, U
′+, U

′−, U+, U−, u′, u, w′, w, as vectors of length T .

4. Evaluate F+
j , F−j , and fj = F+

j − F
−
j using (14) and let π1j ← fj for j = 1, · · · , T ;

5. Let C++
j ← Cj−1,j

(
F+
j−1, F

+
j

)
, C+−

j ← Cj−1,j

(
F+
j−1, F

−
j

)
, C−+

j ← Cj−1,j

(
F−j−1, F

+
j

)
, and C−−j ←

Cj−1,j

(
F−j−1, F

−
j

)
for j = 2, · · · , T ;

6. Set P2j ← C++
j − C+−

j − C−+
j + C−−j for j = 2, · · · , T ;
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7. for j = 2, · · · , T : (T1) do

8. U
′+
j ← F+

j−1|j =
(
C++
j − C+−

j

)
/fj , U

′−
j ← F−j−1|j =

(
C−+
j − C−−j

)
/fj , and u′j ←

fj−1|j = F+
j−1|j − F

−
j−1|j ;

9. U+
j ← F+

j|j−1 =
(
C++
j − C−+

j

)
/fj−1, U−j ← F−j|j−1 =

(
C−+
j − C−−j

)
/fj−1, and uj ←

fj|j−1 = F+
j|j−1 − F

−
j|j−1;

10. end for

11. for t = 2, · · · , T − 1 : (T2, · · · , TT−1) do

12. let Cαβj ← Cj−t,j|(j−t+1):(j−1)

(
U
′α
j−1, U

β
j

)
, for j = t+ 1, · · · , T and α, β ∈ {+,−};

13. let w′j ← u′j , wj ← uj for j = t, · · · , T ;

14. for j = t+ 1, · · · , T : do

15. U
′+
j ←

(
C++
j − C+−

j

)
/wj , U

′−
j ←

(
C−+
j − C−−j

)
/wj and u′j ← U

′+
j − U

′−
j ;

16. U+
j ←

(
C++
j − C−+

j

)
/w′j−1, U−j ←

(
C+−
j − C−−j

)
/w′j−1 and uj ← U+

j − U
−
j ;

17. end for

18. let πt+1,j ← πt,j−1 × uj for j = t+ 1, · · · , T .

19. end for

20. Return the likelihood function πTT .

Proof of Theorem 1. The characteristic function of the test statistic SNT (β0 | β1) conditional on

X is given by

φSNT
(u) = EX [exp(iuSNT (β0 | β1))]

= EX

[
exp

(
iu

(
T∑
t=1

Rt,t−1 +

T∑
t=1

ln

{
1− pt[xt−1,β0,β1 | X]

pt[xt−1,β0,β1 | X]

}
s(ỹt)

))]
,

which may be expressed as

φSNT
(u) = EX

[
T∏
t=1

exp

(
iu

(
Rt,t−1 + ln

{
1− pt[xt−1,β0,β1 | X]

pt[xt−1,β0,β1 | X]

}
s(ỹt)

))]
,
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with R1,0 = 0, and Rt,t−1 =
2∑

l=t−1

ln cσ̃ltt|σ̃1t,··· ,σ̃t−1,t
+ ln cσ̃1tt for t = 2, · · · , T , for the D-vine-array

Ã = (σ̃lt)1≤l≤t≤T , such that l = 2, · · · , T − 1 is the row with tree Tl, and column t has the permutation

σ̃t−1 = (σ̃1t, · · · , σ̃t−1,t) of the previously added variables, pt[xt−1,β0,β1 | X] = Pt[εt ≤ f(xt−1,β0) −

f(xt−1,β1) | X], and s(ỹt) = s(yt− f(xt−1,β0)). Furthermore, u ∈ R and the complex number i =
√
−1.

Unlike Dufour and Taamouti (2010), ỹt for t = 1, · · · , T are no longer necessarily independent conditional

on X. Therefore, we follow Heinrich (1982) by expressing the characteristic function φSNT
(u) as follows

φSNT
(u) =

T∏
t=1

ϕt(u)

where ϕ1(u) = EX
[
exp
(
iu
(

ln
{

1−p1[x0,β0,β1|X]
p1[x0,β0,β1|X]

}
s(ỹ1)

))]
and for t = 2, · · · , T

ϕt(u) =
ft(u)

ft−1(u)
, where, ft(u) = EX [exp(iuSNt(β0 | β1))]

Heinrich (1982) shows that ϕt(u) can alternatively be expressed as

ϕt(u) = EX
[
exp

(
iu

{
Rt,t−1 + ln

{
1− pt[xt−1,β0,β1 | X]

pt[xt−1,β0,β1 | X]

}
s(ỹt)

})]
+ ρt(u)

where

ρt(u) =

{
EX [exp (iu {SNt (β0 | β1)})]−

==EX
[
exp

(
iu

{
Rt,t−1 + ln

{
1− pt[xt−1,β0,β1 | X]

pt[xt−1,β0,β1 | X]

}
s(ỹt)

})]
×

==EX [exp (iu {SNt−1 (β0 | β1)})]
}/

EX [exp (iu {SNt−1 (β0 | β1)})] .

Therefore, the characteristic function of the PCC-POS test statistic can be expressed as

φSNT
(u) =

T∏
t=1

ϕt(u)

=
T∏
t=1

(
EX
[
exp

(
iu

{
Rt,t−1 + ln

{
1− pt[xt−1,β0,β1 | X]

pt[xt−1,β0,β1 | X]

}
s(ỹt)

})]
+ ρt(u)

)
,

(40)

where ρ1(u) = 0, R1,0 = ρ1(u) = 0.

Let Zt = Rt,t−1 + ln
{

1−pt[xt−1,β0,β1|X]
pt[xt−1,β0,β1|X]

}
s(ỹt) for t = 1, · · · , T . Then following Heinrich (1982),

and by assuming that Z1, · · · , ZT are weakly dependent, the term ρt(u) can further be factorized. For

instance, a case of such weakly dependent random variables for which a Theorem exists is the regularity
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Markov type process (i.e. RMT-process). Let Bs+ms = σ(Zs, · · · , Zs+m) be the Borel σ-field generated by

{Zt, t = s, · · · , s + u}. The process {Zt}t=1,2,··· is an RMT-process, if for 1 ≤ s ≤ t, the uniform mixing

coefficient φ(m) ≤ γ(s, t) with probability one, where

φ(m) ≡ sup
s≥1

φ(Bs1,B∞s+m)

and where φ(Bs1,B∞s+m)

φ(Bs1,B∞s+m) ≡ sup
G∈B∞s+m,H∈Bs1

|P [H | G]− P [H]|,

with sups≥1 γ(s, s+m)→ 0 as m→∞. Given such dependence, ρt(u) can be factorized using the results

of Theorem 2 of Heinrich (1982).

The conditional CDF of SNT (β0 | β1) evaluated at a constant c1(β0,β1), where c1(β0,β1) ∈ R, given

by the conditional characteristic functions φSNT
(u) can then be obtained using the Fourier-inversion

formula [see Gil-Pelaez (1951)] as follows

P [SNT (β0 | β1) ≤ c1(β0,β1)] =
1

2
− 1

π

∫ ∞
0

Im{exp(−iuc1(β0,β1))φSNT
(u)}

u
du

where ∀u ∈ R, the conditional characteristic function φSNT
(u) is expressed by (40) and Im{z} denotes

the imaginary part of the complex number z. Therefore, the power function can be obtained as follows

Π(β0,β1) = P [SNT (β0 | β1) > c1(β0,β1)] =
1

2
+

1

π

∫ ∞
0

Im{exp(−iuc1(β0,β1))φSNT
(u)}

u
du
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Additional simulations.

Figure 12: Power comparisons: different tests. Student’s t(ν) error distributions, with different degrees

of freedom ν, ρ = 0 in (33) and θ = 0.9 in (32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-PCC-POS

test] with: (1) the t-test and (2) the t-test based on White’s (1980) variance correction [WT-test].

49



Figure 13: Power comparisons: different tests. Student’s t(ν) error distributions, with different degrees

of freedom ν, ρ = 0.1 in (33) and θ = 0.9 in (32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-PCC-POS

test] with: (1) the t-test and (2) the t-test based on White’s (1980) variance correction [WT-test].
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Figure 14: Power comparisons: different tests. Student’s t(ν) error distributions, with different degrees

of freedom ν, ρ = 0.5 in (33) and θ = 0.9 in (32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-PCC-POS

test] with: (1) the t-test and (2) the t-test based on White’s (1980) variance correction [WT-test].
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Figure 15: Power comparisons: different tests. Student’s t(ν) error distributions, with different degrees

of freedom ν, ρ = 0.9 in (33) and θ = 0.9 in (32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-PCC-POS

test] with: (1) the t-test and (2) the t-test based on White’s (1980) variance correction [WT-test].
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Figure 16: Comparison of the student’s t distribution with various degrees of freedom to the normal

distribution
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Note: In this figure, we compare the Normal and Student’s distribution with two, four and six degrees
of freedom - i.e. ν = 2, ν = 4, ν = 6.
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