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Abstract

We propose point-optimal sign-based tests for linear and nonlinear predictive regressions that are

valid in the presence of heteroskedasticity of unknown form and persistent volatility, as well as persistent

regressors and heavy-tailed errors. These tests are exact, distribution-free, and may be inverted to

build confidence regions for the parameters of the regression function. Point-optimal tests maximize

power at a predetermined point in the alternative hypothesis parameter space, which in practice is

unknown. Therefore, we suggest an adaptive approach based on the split-sample technique to shift the

power function close to that of the power envelope. We then present a Monte Carlo study to assess the

performance of the proposed “quasi”-point-optimal sign test by comparing its size and power to those

of certain existing tests which are intended to be robust against heteroskedasticity. The results show

that our procedures outperform classical tests. Finally, as predictors of stock returns are often highly

persistent and lead to invalid inference using conventional tests, we consider an empirical application

to illustrate the relevance of our proposed tests for testing the predictability of stock returns.
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1 Introduction

Numerous studies investigate the predictability of financial and economic variables using the past

values of one or more predictors, as well as the horizon at which evidence in favor of predictability is

prevalent. Most commonly encountered examples concern the predictability of stock returns using the lag

of certain fundamental variables, such as the dividend-price and earnings-price ratios or the interest rates

[see Campbell and Shiller (1988), Fama and French (1988a,b), Campbell and Yogo (2006), Campbell and

Thompson (2008), and Golez and Koudijs (2018) among others]. Predictability in this context is generally

assessed using the OLS regression of returns against said predictors and tested with conventional t-type

tests. For instance, by utilizing this approach, Fama and French (1988a,b) and Welch and Goyal (2008)

conclude that predictability in stock returns is not of economic significance at short horizons, yet the

predictability power of the predictors increase at longer horizons. However, the regressors frequently

considered in these studies are often highly persistent (near nonstationarity) with innovations that are

correlated with the disturbances in the predictive regression of returns [see Phillips (2015) for a review].

In such situations, unless the predictor is strictly exogenous, we know that the OLS estimator of the

coefficients, although consistent, will suffer from significant bias [see Stambaugh (1999), Magdalinos

and Phillips (2009)]. As a result, the t-statistic will have a nonstandard distribution in finite samples

which leads to invalid inference [see Mankiw and Shapiro (1986), Banerjee et al. (1993) and Stambaugh

(1999) among others]. Moreover, inference based on consistent heteroskedasticity and autocorrelation

corrected (HAC) approaches are shown to have poor finite sample performance under different forms of

heteroskedasity and nonlinear dependencies [see Dufour and Taamouti (2010)], which is of relevance in

this setting, since some studies further suggest that stock returns’ volatility are stochastic and highly

persistent [see Jacquier et al. (2004) and Hansen et al. (2014)]. In this paper, we address the endogeneity

issue inherent within a predictive regression framework, by deriving point-optimal sign-based tests (POS-

based tests hereafter) in the context of linear and nonlinear models that are distribution-free, robust

against heteroskedasticity of unknown form as well as serial (nonlinear) dependence, provided that errors

have zero median conditional on their past and the past of the explanatory variables.

Nelson and Kim (1993) show that in a predictive regression setting, sample slope coefficients and the

asymptotic standard errors of Newey and West (1986) are biased towards significant t-statistics, which

increase with longer return horizons. Thus, they reduce the small-sample bias using bootstrap simulations,

whereas Stambaugh (1999) further demonstrates that in the case of stationary regressors said bias can

be corrected using a first order asymptotic bias correction procedure. Amihud and Hurvich (2004) and

Amihud et al. (2008) adopt a similar process to reduce finite sample bias in regression coefficients for short

return horizons, and more recently Kan and Pan (2021) adjust for the bias in the slope coefficient and the
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standard errors in the context of long-horizon returns. However, studies by Phillips and Lee (2013) and

Phillips (2014) show this approach to be infeasible in the presence of predictors that exhibit local-to-unity,

unit-root or explosive persistency. Therefore, many inference procedures in this context address the issue

of size distortions by considering local-to-unity asymptotics as proposed by Chan and Wei (1987) and

Phillips (1987), where the key predictor variable is assumed to be integrated [Lewellen (2004)], or can

be modeled as having a local-to-unit root [Elliott and Stock (1994), Torous et al. (2004), and Campbell

and Yogo (2006), among others]. Notable studies under the local-to-unity dynamics employ an array of

procedures, such as Bonferroni corrections [e.g. Cavanagh et al. (1995) and Campbell and Yogo (2006)],

a conditional likelihood based approach [e.g. Jansson and Moreira (2006)], as well as the nearly optimal

tests proposed by Elliott et al. (2015). In more recent works, Kostakis et al. (2015) and Phillips and Lee

(2016) expand on the predictability literature by utilizing an extension of the instrumental variable (IV

hereafter) procedure suggested by Phillips et al. (2009), to generalize inference to multivariate regressors

with integrated and mildly explosive persistency. As far as IV procedures are concerned, Ibragimov

et al. (2020) adopt a nonlinear instrumental variable estimation approach (where the instrument is a sign

transformation of the predictor) that deals with the issues of persistent endogeneity and heavy-tailedness.

Additionally, they propose nonparametric volatility correction to circumvent the problems caused by

heterogeneous and persistent stock returns’ volatility. Finally, a number of exact and nonparametric

inference procedures within this context include the signed and sign-ranked statistics of Campbell and

Dufour (1991) and Campbell and Dufour (1995, 1997), which are model-free and impose mild assumptions

on the distribution of the error terms. These inference methods are useful in the presence of a single

regressor and a nuisance parameter. Recent developments in distribution-free and exact tests include

those proposed by Gungor and Luger (2021), which consider several prediction horizons, as well as test

for predictability in quantiles.

The contribution of the POS-based tests proposed in our study is twofold: firstly, as the tests are

distribution-free, they are valid in the presence of regressors with general persistency and different forms of

nonlinear dependencies in finite samples, and do not suffer from discontinuity in the limiting distribution

of conventional test statistics between stationary, local-to-unity and explosive autoregressions. Secondly,

our tests possess the greatest power among certain parametric and nonparametric tests that are frequently

encountered in practice and can easily be extended to multivariate testing problems.

In a recent study, Dufour and Taamouti (2010) propose simple point-optimal sign-based tests in

the context of linear and nonlinear regression models, which are valid under non-normality and hetero-

skedasticity of unknown form, provided the errors have zero median conditional on the explanatory

variables. These tests are exact, distribution-free, and robust against heteroskedasticity of unknown
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form, and may be inverted to build confidence regions for the vector of unknown parameters. This work,

however, is developed under the assumption that the errors are independent. The main motivation is

to build point-optimal sign-based tests for linear and nonlinear predictive regressions that retain the

advantages of the POS-based tests proposed by Dufour and Taamouti (2010). To extend this work,

we recognize that under the alternative hypothesis the signs are no longer necessarily independent and

the test statistic now depends on calculating the joint conditional distribution of the signs, which is

computationally infeasible. Therefore, an additional assumption on the dependence structure of the

conditional signs is needed to obtain feasible test statistics; namely, a Markovian assumption on the

conditional signs.

By construction, our POS-based tests control size for any given sample. Under the null hypothesis

of unpredictability, the tests are valid even in the presence of the bias problem pointed out by Mankiw

and Shapiro (1986) and Stambaugh (1985, 1999), which affects the classical testing procedure for stock

returns predictability. In addition, our tests do not impose any modeling assumptions on the predictors

and are robust against heteroskedasticity of unknown form and/or serial (nonlinear) dependencies. The

tests are point-optimal tests, which are useful in a number of ways and are particularly attractive when

testing one financial theory against another. An important feature of these tests stems from the fact

that they trace out the power envelope - i.e. the maximum attainable power for a given testing problem,

which may be used as a benchmark against which other testing procedures can be evaluated. Finally,

our tests may be inverted to build confidence regions for the parameters of the regression function.

As point-optimal tests maximize power at a nominated point in the alternative hypothesis parameter

space, a practical problem concerns finding an alternative at which the power curve of the POS-based

test is close to that of the power envelope. Following Dufour and Torrès (1998), Dufour and Jasiak (2001)

and Dufour and Taamouti (2010), we propose an adaptive approach based on the split-sample technique

to choose the alternative hypothesis. The latter consists of splitting the sample into two independent

subsamples, where the first part is used to estimate the alternative hypothesis and the second part to

compute the POS-based test statistic [see Dufour and Iglesias (2008)]. In a simulations exercise, Dufour

and Taamouti (2010) find that using the first 10% of the sample to estimate the alternative and the

rest to compute the test statistic, achieves a power that traces out the power envelope. We present a

Monte Carlo study to assess the performance of the proposed “quasi”-POS-based tests by comparing its

size and power to certain existing tests that are intended to be robust against heteroskedasticity. We

show the superiority of our procedures in the presence of nearly integrated regressors and under different

distributional assumptions and forms of heteroskedasticity.

The rest of the paper is organized as follows: in Section 3, we propose exact POS-based tests in the
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context of linear and nonlinear predictive regressions. Section 4 discusses the adaptive approach based

on the split-sample technique for choosing the alternative hypothesis and computing the POS-based test

statistic. Section 5 expands on the details of the construction of confidence regions using the projection

techniques and provides a numerical example. Section 6 presents a Monte Carlo study to assess the

performance of the POS-based tests by comparing their size and power to those of certain popular tests.

Section 7 is devoted to an empirical application, in which the predictability power of certain fundamental

variables on future stock returns is tested at different horizons and sampling frequencies. Finally, the

paper is concluded in Section 8. Proofs are presented in Appendix 9.

2 Framework

In this Section, we adapt the framework considered by Coudin and Dufour (2009) to a predictive

regression setup, where the dependent variable is now regressed against a lagged predictor. Consider

a stochastic process Z = {Zt = (yt,x
′
t−1) : Ω → R(k+1), t = 1, 2, · · · } defined on a probability space

(Ω,F , P ). Suppose that yt can linearly be explained by the vector variable xt−1

yt = β′xt−1 + εt, t = 1, · · · , T, (2.1)

where yt is a dependent variable and xt−1 is an (k+ 1)× 1 vector of stochastic explanatory variables, say

xt−1 = [1, x1,t−1, · · · , xk,t−1]′, β ∈ R(k+1) is an unknown vector of parameters with β = [β0, β1, · · · , βk]′

and

εt | X ∼ Ft(. | X), (2.2)

where Ft(. | X) is an unknown conditional distribution function and X = [x′0, · · · ,x′T−1]′ is an T ×(k+1)

information matrix.

Let {Zt,Ft}t=1,2,··· be an adapted stochastic sequence, such that Ft is a σ-field in Ω, Fs ⊆ Ft for

s < t, σ(Z1, · · · , Zt) ⊂ Ft, where σ(Z1, · · · , Zt) is the σ-field generated by Z1, · · · , Zt. In the context

of general forms of serial (nonlinear) dependence, an assumption commonly imposed on the error terms

{εt, t = 1, 2, · · · } is that the error process is a martingale difference sequence (MDS hereafter) with respect

to Ft = σ(Z1, · · · , Zt) for t = 1, 2, · · · , - i.e. E{εt | Ft−1} = 0, ∀t ≥ 1. We follow Coudin and Dufour

(2009) by departing from this assumption and considering the median as an alternative measure of central

tendency. This implies imposing a median-based analogue of the MDS on the error process - namely, we

extend the quantilegale assumption proposed by Linton and Whang (2007) and suppose that εt is a strict

conditional mediangale as defined as follows
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Definition 1 Let S(ε,F) = {εt,Ft}t=1,2,··· be an adapted stochastic sequence, where Ft−1 = σ(ε1, · · · , εt, X).

Then εt in S(ε,F) is a strict conditional mediangale if

P [εt > 0 | εt−1, X] = P [εt < 0 | εt−1, X] =
1

2
, (2.3)

with

ε0 = {∅}, εt−1 = {ε1, · · · , εt−1}, for t ≥ 2.

Before proceeding further, it is important to emphasize that Linton and Whang (2007) define εt as a

mediangale if and only if E
[
ψ 1

2
(εt) | Ft−1

]
= 0, ∀t, with Ft−1 = σ(εt−1, εt−2, · · · ) and ψ 1

2
(x) = 1[0,∞).

However, note that the strict conditional mediangale assumption (2.3), is conditioned on the entire process

X. Coudin and Dufour (2009) argue that as long as the xt’s are strictly exogenous, the conditional

mediangale assumption is analogous to MDS on the signs with respect to Ft = σ(Z1, · · · , Zt). However,

as the errors of the predictive regressions of the form (2.1) are contemporaneously correlated with the

disturbances of the regressors, say ut, there if feedback from ut to xt through εt and the process xt is

weakly exogenous, which subsequently suggests that (2.3) can be substituted with

P [εt > 0 | εt−1,Xt−1] = P [εt < 0 | εt−1,Xt−1] =
1

2
, (2.4)

where Xt−1 = {x0, · · · , xt−1}. Additionally, assumption (2.3) entails that εt | X has no mass at zero for

all t, which is only true if εt | X is continuous. Following Definition 2.1 of Coudin and Dufour (2009), the

strict conditional mediangale assumption can be relaxed, by substituting P [εt > 0 | εt−1, X] = P [εt <

0 | εt−1, X] in equation (2.3), which in turn allows εt to have discrete distribution, with a non-zero

probability mass at zero. In this case, Coudin and Dufour (2009) show that the sign transformation

S(x, U) = s(x)+ [1−s(x)2]s(U −0.5) for U ∼ U(0, 1), and as long as U and εt are independent, conforms

to

P [S(εt, Ut) = 1] = P [S(εt, Ut) = 0] =
1

2
, (2.5)

irrespective of the distribution of εt. However, for the simplicity of exposition, we only consider continuous

distributions.

Equation (2.1) in conjunction with assumption (2.3) allows the error terms to possess asymmetric,

heteroskedastic and serially (nonlinear) dependent distributions, so long as the conditional medians

are zero. Assumption 2.3 allows for many dependent schemes, such as those of the form ε1 =

σ1(x0, · · · , xt−2)ε1, εt = σt(x0, · · · , xt−2, ε1, · · · , εt−1)εt, t = 2, · · · , T , where ε1, · · · , εT are independent

with a zero median. In time-series context this includes models such as ARCH, GARCH or stochastic

6



volatility with non-Gaussian errors. Furthermore, in the mediangale framework the disturbances need

not be second order stationary.

Finally, we reiterate Coudin and Dufour (2009) by noting that modifying assumption (2.3) to P [εt <

0 | Ft−1] allows us to consider other quantiles.

3 POS tests in linear and nonlinear predictive regressions

In this Section, we derive POS-based tests in the context of linear and nonlinear predictive regressions.

First, we divert our attention to the problem of testing the null hypothesis of unpredictability in a linear

model, which is later generalized to testing unpredictability in a nonlinear model. Although the former

problem is a special case of the latter, for simplicity of exposition the linear predictive regression model

is considered first.

3.1 Testing (un)predictability in linear models

Testing the null hypothesis of unpredictability in model (2.1) is equivalent to testing

H0 : β = 0 (3.1)

against the alternative H1

H1 : β = β1. (3.2)

where 0 is a (k + 1)× 1 zero vector. We define the following vector of signs

U(T ) = (s(y1), · · · , s(yT ))′, (3.3)

where, for 1 ≤ t ≤ T,

s(yt) =


1, if yt ≥ 0

0, if yt < 0

(3.4)

The test is Neyman-Pearson type test based on signs [see Lehmann and Romano (2006)] which

maximize the power function under the constraint P [reject H0 | H0] ≤ α. The idea is to build point-

optimal sign-based tests to test the null hypothesis (3.1) against the alternative hypothesis (3.2). To do

so, we first define the likelihood function of sample in terms of signs s(y1), · · · , s(yT ) conditional on X

L (U(T ),β, X) = P [s(y1) = s1, · · · , s(yT ) = sT | X] =
T∏
t=1

P
[
s(yt) = st | S

¯t−1
, X
]
, (3.5)
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with

S
¯0 = {∅} , S

¯t−1
= {s(y1) = s1, · · · , s(yt−1) = st−1} , for t ≥ 2, (3.6)

and

P [s(y1) = s1 | S
¯0, X] = P [s(y1) = s1 | X] , (3.7)

where each st, for 1 ≤ t ≤ T , takes two possible values 0 and 1.

Theorem 1 Under model (2.1) and assumption (2.3), the variables s(ε1), · · · , s(εT ), and subsequently

s(y1), · · · , s(yT ) under the null hypothesis of unpredictability, are i.i.d conditional on X according to the

distribution

P [s(ε1) = 1 | X] = P [s(ε1) = 0 | X] =
1

2
, t = 1, · · · , T. (3.8)

This result holds true iff for any combination of t = 1, · · · , T there is a permutation π : i → j such that

the mediangale assumption holds for j. Then the signs s(ε1), · · · , s(εT ) are i.i.d.

As the errors satisfy the strict conditional mediangale assumption (2.3), the distribution of the signs

s(ε1), · · · , s(εT ), and in turn s(y1), · · · , s(yT ) under the null hypothesis of unpredictability, is well-

specified, and the signs are mutually independent [see Coudin and Dufour (2009)]. However, note that

under the alternative hypothesis, the strict conditional mediangale assumption no longer holds. Thus, a

sign-based test for testing the null hypothesis (3.1) against the alternative hypothesis (3.2) is given by

the following proposition:

Proposition 1 Under assumptions (2.1) and (2.3), let H0 and H1 be defined by (3.1) - (3.2),

SLT (β1) =
T∑
t=1

at(β1)s(yt), (3.9)

where, for t = 1, · · · , T,

at(β1) = ln

{
P
[
yt ≥ 0 | S

¯ t−1
, X
]

P
[
yt < 0 | S

¯ t−1
, X
]} , (3.10)

and suppose the constant c1(β1) satisfies P
[∑T

t=1 at(β1)s(yt) > c1(β1)
]

= α under H0, with 0 < α < 1.

Then the test that rejects H0 when

SLT (β1) > c1(β1) (3.11)

is most powerful (conditional on X) for testing H0 against H1 among level-α tests based on the signs(
s(y1), · · · , s(yT )

)′
.
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Notice that the calculation of the test statistic SLT (β1) depends on the weights at(β1), which in turn

depend on the calculation of the conditional probabilities P
[
yt ≥ 0 | S

¯t−1
, X
]

and P
[
yt < 0 | S

¯t−1
, X
]
.

The latter two terms involve the distribution of the joint process of signs
(
s(y1), · · · , s(yT )

)′
conditional

on X, which is unknown. An alternative way to compute the terms P
[
yt ≥ 0 | S

¯t−1
, X
]

and

P
[
yt < 0 | S

¯t−1
, X
]

is to use simulations, however, this will be computationally burdensome as it requires

the simulation of the joint distribution of the process of signs
(
s(y1), · · · , s(yT )

)′
conditional on X, which

depends on the sample size T . Hence, to propose a feasible test statistic, say S̃LT (β1), we impose the

following assumption.

Assumption A1: Under the alternative hypothesis, the sign process {s(yt)}∞t=0 conditional on X follows

a Markov process.

Now, under assumption A1, the probability terms P
[
yt ≥ 0 | S

¯t−1
, X
]

and P
[
yt < 0 | S

¯t−1
, X
]

in the

weight function at(β1) can be expressed as follows:


P
[
yt ≥ 0 | S

¯t−1
, X
]

= P [yt ≥ 0 | yt−1 ≥ 0, X]s(yt−1) P [yt ≥ 0 | yt−1 < 0, X]1−s(yt−1) ,

P
[
yt < 0 | S

¯t−1
, X
]

= P [yt < 0 | yt−1 ≥ 0, X]s(yt−1) P [yt < 0 | yt−1 < 0, X]1−s(yt−1) .

(3.12)

Under this assumption, expressions P
[
yt ≥ 0 | S

¯t−1
, X
]

and P
[
yt < 0 | S

¯t−1
, X
]

simplify the calculation

of the test statistic SLT (β1) and lead to the following result:

Corollary 1 Under assumptions (2.1) and (2.3), let H0 and H1 be defined by (3.1) - (3.2),

S̃LT (β1) =

T∑
t=1

ãt(β1)s(yt) +
T∑
t=1

b̃t(β1)s(yt)s(yt−1), (3.13)

such that

ã1(β1) = ln

{
πc1(β1)

π1(β1)

}
, b̃1(β1) = 0, (3.14)

and for t = 2, · · · , T,

ãt(β1) = ln

{(
1− πt,t−1(β1)

πt−1(β1)

)/
πt,t−1(β1)

πt−1(β1)

}
, b̃t(β1) = ln

1−
(

πt(β1)
πc
t−1(β1)

− πt,t−1(β1)
πc
t−1(β1)

)
πt(β1)
πc
t−1(β1)

− πt,t−1(β1)
πc
t−1(β1)

− ãt(β1),

(3.15)
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where for t = 2, · · · , T

πt(β1) = P
[
εt < −β′1xt−1 | X

]
(3.16)

πt,t−1(β1) = P
[
εt < −β′1xt−1, εt−1 < −β′1xt−2 | X

]
(3.17)

πct (β1) = 1− πt(β1), (3.18)

noting that π1,0 = π1 = P [ε1 < −β′1x0 | X]. Further, suppose the constant c̃1(β1) satisfies

P

[
T∑
t=1

ãt(β1)s(yt) +
T∑
t=1

b̃t(β1)s(yt)s(yt−1) > c̃1(β1) | H0

]
= α (3.19)

with 0 < α < 1. Then the test that rejects H0 when

S̃LT (β1) > c̃1(β1) (3.20)

is most powerful (conditional on X) for testing H0 against H1 among level-α tests based on the signs(
s(y1), · · · , s(yT )

)′
.

Now the calculation of the test statistic S̃LT (β1) depends on the univariate and bivariate conditional

probabilities P [εt < · | X] and P [ εt−1 < ·, εt < · | X].

Observe that under the null hypothesis of unpredictability, the signs s(y1), · · · , s(yT ) are i.i.d.

according to a Bernoulli Bin(1, 0.5). Therefore, under the null hypothesis, the distribution of the test

statistic S̃LT (β1) only depends on the known weights ãt(β1) and b̃t(β1) and does not involve any nuisance

parameters. Nonparametric assumption (2.3) implies that tests based on S̃LT (β1), such as the test

given by (3.20), are distribution-free and robust against heteroskedasticity of unknown form, and thus,

a nonparametric pivotal function. Under the alternative hypothesis, however, the power function of the

test depends on the form of the bivariate and the marginal distributions of the error terms respectively.

One approach for calculating these probabilities entails fitting copula models, which provide the means

of separating the marginal distributions of the process from their respective dependence structure. The

latter stems from Sklar (1959), which decomposes the joint distribution of Y = [y1, · · · , yT ]′ conditional

on X as

Y | X ∼ H(. | X) = C (F1(. | X), · · · , FT (. | X)) , (3.21)

where Ft(. | X) for t = 1, · · · , T are uniformly distributed marginals - i.e. Ft(. | X) := ut ∼ U [0, 1].

In our context the elements of Y are uncorrelated, yet exhibit serial nonlinear dependence which is

captured by the copula function C(.). The implication of this for specifying a copula function for the
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joint distribution of Y conditional on X is imposing an identity correlation matrix. We may consider the

“jointly symmetric” copulas proposed by Oh and Patton (2016), which can be constructed with any given

(possibly asymmetric) copula family. In addition, when they are combined with symmetric marginals,

they ensure an identity correlation matrix. A “jointly symmetric” copula is defined as follows:

Definition 2 The n dimensional copula CJS, is jointly symmetric:

CJS (u1, · · · , un) =
1

2n

2∑
k1=0

· · ·
2∑

kn=0

(−1)R C(ũ1, · · · , ũi, · · · , ũn), (3.22)

where R =
n∑
i=1

1{ki = 2}, and ũi =


1, ki = 0

ui, ki = 1

1− ui, ki = 2

. (3.23)

The general idea is that the average of mirror image rotations of a possibly asymmetric copula along each

axis generates a jointly symmetric copula [see Oh and Patton (2016)]. For instance, the marginals can

be assumed to possess standard normal distributions, while the nonlinear dependency is modeled using

jointly symmetric copulas.

In the literature, the means of allowing for nonlinear serial dependence for processes which are

linearly unrelated is often accompanied by the assumption that Y conditional on X is distributed

according to a multivariate Student’s t distribution - i.e. Y | X ∼ tν(0, I), where 0 is a zero vector

corresponding to the location parameter, and I is an identity matrix. When I is imposed on the

multivariate Student’s t distribution, the conditional joint distribution of Y does not factorize into the

product of its marginals. Thus, a special case we may consider consists in ε1, ε2, · · · , εT−1, εT distributed

according to Student’s t distribution t(ν), with ν degrees of freedom. We may evaluate the bivariate

probabilities P [εt−1 < ·, εt < · | X] using a multivariate Student’s t distribution tν(0, I), by imposing a

zero location parameter vector and the identity correlation matrix I. Then the probabilities (3.16), (3.17)

and (3.18) are evaluated as follows:

πt(β1) = τν(−β′1xt−1) (3.24)

πt,t−1(β1) = T ν(−β′1xt−1,−β′1xt−2) (3.25)

πct (β1) = 1− πt(β1), (3.26)

where τν(.) is the Student’s t distribution function with ν degrees of freedom, T ν(., .) is the bivariate t

distribution with ν degrees of freedom, and with location and shape parameters 0 and I respectively.
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3.2 Monte Carlo tests

We may obtain exact critical values and confidence intervals in finite samples whose distribution is

intractable by simulations using Monte Carlo test techniques [see Dwass (1957), Barnard (1963), Dufour

(2006), Coudin and Dufour (2009)]. Under the null hypothesis of unpredictability, the distribution of

the test statistic, S̃LT (β1), does not involve any nuisance parameters and is a pivotal function. As

such, performing Monte Carlo tests is rather straightforward1. Hence, the distribution of S̃LT (β1), can

be simulated under the null hypothesis and the relevant critical values can be evaluated to any degree

of precision with a sufficient number of replications. Since the test statistic S̃LT (β1) is a continuous

random variable, its quantiles F−1(α) are easy to compute, where for any probability distribution F (x)

the quantile function is defined as follows:

F−1(α) =


inf{x : F (x) ≥ α)} if 0 < α < 1

inf{x : F (x) > 0} if α = 0

sup{x : F (x) < 1} if α = 1.

(3.27)

To simulate the distribution of S̃LT (β1), the following algorithm is implemented:

Algorithm 1 Algorithm for utilizing the POS-based tests (continuous εt)

1: Compute S̃L
0

T (β1)← S̃LT (β1) based on the observed data;
2: Choose B such that α(B + 1) ∈ N;
3: for j in 1 : B do

4: Generate {s(j)t }Tt=1, s.t. s
(j)
t ∼ Bin(n = 1, p = 0.5);

5: Compute S̃L
(j)

T (β1) using the generated sample;
6: end for

7: Compute c̃1(β1)← (1− α)% quantile of {S̃L
(j)

T (β1)}Bj=1;

8: if S̃L
0

T (β1) ≥ c(β1) then
9: Reject H0

10: end if

As discussed in Section 2, suppose the errors εt possess a discrete distribution, and the test-statistic is

subsequently modified to reflect this. Then S̃LT (β1) is no longer continuous, such that for the replications

S̃L
(1)

T (β1), · · · , S̃L
(B)

T (β1)

P

[
S̃L

(l)

T (β1) = S̃L
(m)

T (β1)

]
6= 0, for l 6= m and i, j = 1, · · · , B, (3.28)

and Monte Carlo tests with randomized tie-breaking approach suggested by Dufour (2006) and Coudin

1Dufour (2006) consider extensions involving nuisance parameters using maximized Monte Carlo tests (MMC).
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and Dufour (2009) may be used to perform hypothesis tests. The latter entails “breaking” ties according to

a uniform distribution. In other words, for each variable S̃L
(j)

T (β1), j = 1, · · · , B, we introduce a random

variable W (j), j = 1, · · · , B, where W (j) ∼ U(0, 1), such that W (B) = (W (1), · · · ,W (B))′ is independent

of S(B) = (S̃L
(1)

T (β1), · · · , S̃L
(B)

T (β1))
′. Then we consider the pairs (S̃L

(j)

T (β1),W
(j)), j = 1, · · · , B,

ordered lexicographically - i.e.,(
S̃L

(n)

T (β1),W
(n)

)
≥
(
S̃L

(m)

T (β1),W
(m)

)
⇔{

S̃L
(n)

T (β1) > S̃L
(m)

T (β1) or

(
S̃L

(n)

T (β1) = S̃L
(m)

T (β1) and W (n) ≥W (m)

)} (3.29)

where using the indicator and Kronecker delta functions,

1

[(
S̃L

(n)

T (β1),W
(n)

)
≥
(
S̃L

(m)

T (β1),W
(m)

)]
=

1

[
S̃L

(n)

T (β1) > S̃L
(m)

T (β1)

]
+ δ

(
S̃L

(n)

T (β1)− S̃L
(m)

T (β1)

)
1

[
W (n) ≥W (m)

]
.

(3.30)

and thus according to (3.30), S̃L
(1)

T (β1), · · · , S̃L
(B)

T (β1) is ordered as the pairs (S̃L
(j)

T (β1),W
(j)), j =

1, · · · , B. The algorithm for the latter is as follows:

Algorithm 2 Algorithm for utilizing the POS-based tests (discrete εt)

1: Compute S̃L
0

T (β1)← S̃LT (β1) based on the observed data;
2: Choose B such that α(B + 1) ∈ N;
3: for j in 1 : B do

4: Generate {S(j)t }Tt=1, s.t. S(j)t ∼ Bin(n = 1, p = 0.5);

5: Compute S̃L
(j)

T (β1) using the generated sample;

6: Generate W (j) ∼ U(0, 1) to produce the pairs (S̃L
(j)

T (β1),W
(j));

7: end for

8: Order the pairs: (S̃L
(n)

T (β1),W
(n)) ≥ (S̃L

(m)

T (β1),W
(m))⇔

{S̃L
(n)

T (β1) > S̃L
(m)

T (β1) or (S̃L
(n)

T (β1) = S̃L
(m)

T (β1) and W (n) ≥W (m))}.
9: Compute c̃1(β1)← (1− α)% quantile of {S̃L

(j)

T (β1)}Bj=1;

10: if S̃L
0

T (β1) ≥ c(β1) then
11: Reject H0

12: end if

3.3 Testing general full coefficient hypotheses in nonlinear predictive regressions

Following Dufour and Taamouti (2010), we may extend the earlier results by considering a nonlinear

13



predictive regression model of the form

yt = f(xt−1,β) + εt, t = 1, · · · , T, (3.31)

where xt−1 is an observable (k + 1) × 1 vector of stochastic explanatory variables, such that xt−1 =

[1, x1,t−1, · · · , xk,t−1]′, f( · ) is a scalar function, β ∈ R(k+1) is an unknown vector of parameters and

εt | X ∼ Ft(. | X), (3.32)

where as before Ft(. | X) is a distribution function and X = [x′0, · · · ,x′T−1]′ is an T × (k + 1) matrix.

Once again, we suppose that the error terms process {εt, t = 1, 2, · · · } is a strict conditional mediangale,

such that

P [εt > 0 | εt−1, X] = P [εt < 0 | εt−1, X] =
1

2
, (3.33)

with

ε0 = {∅}, εt−1 = {ε1, · · · , εt−1}, for t ≥ 2, (3.34)

and where (3.33) entails that εt | X has no mass at zero, i.e. P [εt = 0 | X]=0 for all t. We do not require

that the parameter vector β be identified. We consider testing the null hypothesis

H(β0) : β = β0 (3.35)

against the alternative hypothesis

H(β1) : β = β1. (3.36)

A test for H(β0) against H(β1) can be constructed as in Section 3.1. First, we note that model (3.31) is

equivalent to the transformed model

ỹt = g(xt−1, β, β0) + εt, (3.37)

where ỹt = yt − f(xt−1,β0) and g(xt−1,β,β0) = f(xt−1,β) − f(xt−1,β0). Thus, testing H(β0) against

H(β1) is equivalent to testing

H̄0 : g(xt−1, β,β0) = 0, for t = 1, · · · , T, (3.38)
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against

H̄1 : g(xt−1,β,β0) = f(xt−1,β1)− f(xt−1,β0), for t = 1, · · · , T. (3.39)

For Ũ(T ) = (s(ỹ1), · · · , s(ỹT ))′, where, for 1 ≤ t ≤ T,

s(ỹt) =


1, if ỹt ≥ 0

0, if ỹt < 0

(3.40)

the likelihood function of new random sample {s(ỹt)}Tt=1 conditional on X is given by:

L
(
Ũ(T ),β, X

)
= P [s(ỹ1) = s̃1, · · · , s(ỹT ) = s̃T | X] =

T∏
t=1

P
[
s(ỹt) = s̃t | S̃t−1, X

]
, (3.41)

with

S̃0 = {∅} , S̃t−1 = {s(ỹ1) = s̃1, · · · , s(ỹt−1) = s̃t−1} , for t ≥ 2, (3.42)

and

P
[
s(ỹ1) = s̃1 | S̃0, X

]
= P [s(ỹ1) = s̃1 | X] , (3.43)

where each s̃t, for 1 ≤ t ≤ T , takes two possible values 0 and 1. Thus, we can use the result of Proposition

1 to derive a sign-based test to test the null hypothesis (3.35) against the alternative hypothesis (3.36),

which leads to the following proposition:

Proposition 2 Under assumptions (3.31) and (3.33), let H(β0) and H(β1) be defined by (3.35) - (3.36),

SNT (β0 | β1) =
T∑
t=1

at(β0 | β1)s (yt − f(xt−1,β0)) (3.44)

where, for t = 1, · · · , T,

at(β0 | β1) = ln

P
[
ỹt ≥ 0 | S̃t−1, X

]
P
[
ỹt < 0 | S̃t−1, X

]
 , (3.45)

and suppose the constant c1(β0, β1) satisfies P

[
T∑
t=1

at(β0 | β1)s (yt − f(xt−1,β0)) > c1(β0, β1)

]
= α

under H(β0), with 0 < α < 1. Then the test that rejects H(β0) when

SNT (β0 | β1) > c1(β0, β1) (3.46)

is most powerful (conditional on X) for testing H(β0) against H(β1) among level-α tests based on the

signs
(
s(ỹ1), · · · , s(ỹT )

)′
.
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As in Section 3.1, the calculation of the weights at(β0 | β1), which depend on the terms

P
[
ỹt ≥ 0 | S

¯t−1
, X
]

and P
[
ỹt < 0 | S

¯t−1
, X
]
, is made feasible by considering assumption A1 which

extends to the process {s(ỹt), t = 0, 1, · · · }. Thus, under the alternative hypothesis, the sign process

{s(ỹt)}∞t=0 is a Markov process, which leads to the following Corollary:

Corollary 2 Under assumptions (2.1) and (2.3), let H(β0) and H(β1) be defined by (3.35) - (3.36),

ŜNT (β0 | β1) =

T∑
t=1

ãt(β0 | β1)s(ỹt) +

T∑
t=1

b̃t(β0 | β1)s(ỹt)s(ỹt−1), (3.47)

such that

ã1(β0 | β1) = ln

{
π̃ct (β1)

π̃t(β1)

}
, b̃1(β0 | β1) = 0, (3.48)

and for t = 2, · · · , T,

ãt(β0 | β1) = ln

{(
1− π̃t,t−1(β1)

π̃t−1(β1)

)/
π̃t,t−1(β1)

π̃t−1(β1)

}
, (3.49)

b̃t(β0 | β1) = ln

1−
(

π̃t(β1)
π̃c
t−1(β1)

− π̃t,t−1(β1)
π̃c
t−1(β1)

)
π̃t(β1)
π̃c
t−1(β1)

− π̃t,t−1(β1)
π̃c
t−1(β1)

− ãt(β0 | β1) (3.50)

where for t = 2, · · · , T

π̃t(β1) = P [εt < f(xt−1,β0)− f(xt−1,β1) | X] (3.51)

π̃t,t−1(β1) = P [εt < f(xt−1,β0)− f(xt−1,β1), εt−1 < f(xt−2,β0)− f(xt−2,β1) | X] (3.52)

π̃ct (β1) = 1− π̃t(β1), (3.53)

noting that π̃1,0 = π̃1 = P [εt < f(xt−1,β0)− f(xt−1,β1) | X]. Further suppose the constant c̃1(β0,β1)

satisfies

P
[
ŜNT (β0 | β1) > c̃1(β0,β1) | H(β0)

]
= α (3.54)

with 0 < α < 1. Then the test that rejects H(β0) when

ŜNT (β0 | β1) > c̃1(β0,β1) (3.55)

is most powerful (conditional on X) for testing H(β0) against H(β1) among level-α tests based on the

signs
(
s(ỹ1), · · · , s(ỹT )

)′
.

A special case entails considering a linear function f(xt−1,β) = β′xt−1, where as before we may
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suppose that εt for t = 1, · · · , T are distributed according to Student’s t distribution t(ν), with ν degrees

of freedom, and where the bivariate probabilities can be calculated by imposing a bivariate Student’s t

distribution tν(0, I), with a zero location parameter and identity matrix to capture the serial (nonlinear)

dependence. Then the statistic for testing the null hypothesis H(β0) against the alternative H(β1) is

expressed using the weights

π̃t(β1) = τν
(
(β1 − β0)

′ x0

)
(3.56)

π̃t,t−1(β1) = T ν((β0 − β1)
′xt−1, (β0 − β1)

′xt−2) (3.57)

π̃ct (β1) = 1− π̃t(β1), (3.58)

where τν(.) is the Student’s t distribution function with ν degrees of freedom, T ν(., .) is the bivariate t

distribution with ν degrees of freedom, and with location and shape parameters 0 and I respectively.

As in Section 3.1, the test statistic ŜNT (β0 | β1) depends on a predetermined alternative hypothesis

β1, which in practice is unknown. Therefore, in Section 4 we will suggest an adaptive approach based

on the split-sample technique [see Dufour and Taamouti (2010)] which can be used to choose an optimal

alternative hypothesis at which the power of the test is maximized.

4 Choice of the optimal alternative hypothesis

Point-optimal tests depend on the alternative β = β1, which in practice is unknown. Formally, the

test statistic ŜNT (β0 | β1) for testing the full-coefficient hypothesis (3.35) is a function of β1

ŜNT (β0 | β1) =
T∑
t=1

ãt(β0 | β1)s(yt−f(xt−1,β0))+
T∑
t=1

b̃t(β0 | β1)s(yt−f(xt−1,β0))s(yt−1−f(xt−2,β0)),

(4.1)

which in turn implies that its power function, say Π(β0,β1), is also a function of β1. Therefore, the

choice of the alternative β1 has a direct impact on its power function. In other words,

Π(β0,β1) = P [ŜNT (β0 | β1) > c̃1(β0,β1) | H(β1)], (4.2)

where c̃1(β0,β1) satisfies the constraint

P [ŜNT (β0 | β1) > c̃1(β0,β1)|H(β0)] ≤ α. (4.3)

Our objective is to choose the value of β1 at which the power function of the POS-based test statistic
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is maximized and is close to that of the power envelope. This can be accomplished in a number of

ways. Dufour and Taamouti (2010) suggest an adaptive approach based on the split-sample technique

[see Dufour and Jasiak (2001)] to estimate the optimal alternative and to calculate the test statistic, to

make size control easier and maximize power. For a review of adaptive approach for parametric tests

with nonstandard distributions see Dufour and Taamouti (2003) and Dufour et al. (2008).

This approach consists in splitting the sample into two independent parts, where the alternative β1

is estimated using the first part, while the POS-based test statistic ŜNT (β0 | β1) is calculated using the

second part of the sample and the alternative β1 that had been estimated using the first subsample. By

adopting this technique, size control is easier and the power function of the POS-based test traces out

the power envelope. Let T = T1 + T2, y = (y′(1), y
′
(2))
′, X = (X ′(1), X

′
(2))
′, and ε = (ε′(1), ε

′
(2))
′, where y(i),

X(i) and ε(i) for i ∈ {1, 2} each have Ti rows. The first T1 observations of y and X can thus be denoted

by y(1) and X(1), which are used to estimate the alternative hypothesis β1. If the function f(xt−1,β) is

linear - i.e. f(xt−1,β) = β′0xt−1, then β1 can be obtained using the OLS estimator:

β̂(1) = (X ′(1)X(1))
−1X ′(1)y(1). (4.4)

Alternatively, in the case of extreme observations, other robust estimators that are less sensitive to outliers

can be utilized [see Maronna et al. (2019) for a review of robust estimators]. Since β̂(1) is independent

of X(2), the last T2 observations can be used to calculate the test statistic and obtain a valid POS-based

test

ŜNT (β0 | β(1)) =

T∑
t=T1+1

ãt(β0 | β(1))s(yt − x′t−1β0) +

T∑
t=T1+1

b̃t(β0 | β(1))s(yt − x′t−1β0)s(yt−1 − x′t−2β0),

(4.5)

When f(xt−1,β) is a nonlinear function of β, we resort to nonlinear least squares or the maximum

likelihood estimation method to obtain the alternative hypothesis β1. Similar to the linear case, this

entails splitting the sample into two independent subsamples T1 and T2, such that y(1) and X(1) correspond

to the first subsample T1 , using which the alternative hypothesis β1 can be estimated using a nonlinear

least squares method

β̂(1) = arg min
β1

T1∑
t=1

[yt − f(xt−1,β1)]
2 . (4.6)
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Similarly, y(2) and X(2) which correspond to the second subsample are used to calculate the test statistic:

ŜNT (β0 | β(1)) =

T∑
t=T1+1

ãt(β0 | β(1))s(yt − f(xt−1,β0)) (4.7)

= +

T∑
t=T1+1

b̃t(β0 | β(1))s(yt − f(xt−1,β0))s(yt−1 − f(xt−2,β0)), (4.8)

An array of different possibilities exist for choosing the dimensions of the independent subsamples T1

and T2. However, as Dufour and Taamouti (2010) have noted, the number of observations retained in

the first and the second subsamples respectively has a direct impact on the power of the test. A more

powerful test is obtained when relatively small number of observations is used to estimate the alternative

and the rest are reserved to calculate the test statistic. A simulation study carried out by Dufour and

Taamouti (2010) to compare the power-curves of the split-sample POS-based tests to that of the power

envelope, reveals that using approximately 10% of the sample to estimate the alternative and the rest to

calculate the test statistic, yields a power which is very close to that of the power envelope.

5 POS confidence regions

In this Section, we follow Dufour and Taamouti (2010) and Coudin and Dufour (2009) to discuss

the process of building confidence regions at a given significance level α, say Cβ(α), for a vector (sub-

vector) of the unknown parameters β using the proposed POS-based tests. We consider again the linear

regression (3.31) and suppose we wish to test the null hypothesis (3.35) against the alternative hypothesis

(3.36). Formally, the idea involves finding all the values of β0 ∈ R(k+1) such that

ŜNT (β0|β1) =

T∑
t=1

ãt(β0 | β1)s(yt − β′0xt−1) +

T∑
t=1

b̃t(β1)s(yt − β′0xt−1)s(yt−1 − β′0xt−2) < c̃1(β0,β1),

(5.1)

where the critical value c̃1(β0,β1) satisfies the constraint

P
[
ŜNT (β0|β1) > c̃1(β0,β1) | β = β0

]
≤ α. (5.2)

Thus, the confidence region Cβ(α) of the vector of parameters β is defined as

Cβ(α) =
{
β0 : ŜNT (β0|β1) < c̃1(β0,β1)

∣∣∣P [ŜNT (β0|β1) > c̃1(β0,β1) | β = β0] ≤ α
}
. (5.3)

Once the confidence region Cβ(α) is determined, confidence intervals for the components of vector
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β can be obtained using the projection techniques. Confidence sets in the form of transformations T of

β ∈ Rm, T (Cβ(α)) for m ≤ (k + 1) can easily be found using said techniques. Since, for any set Cβ(α)

β ∈ Cβ(α) =⇒ T (β) ∈ T (Cβ(α)), (5.4)

we have

P [β ∈ Cβ(α)] ≥ 1− α =⇒ P [T (β) ∈ T (Cβ(α))] ≥ 1− α, (5.5)

where

T (Cβ(α)) = {δ ∈ Rm : ∃β ∈ Cβ(α), T (β) = δ}. (5.6)

From (5.4) and (5.5), it is evident that the set T (Cβ(α)) is a conservative confidence set for T (β) with

level 1− α. If T (β) is a scalar, then we have

P [inf{T (β0), for β0 ∈ Cβ(α)} ≤ T (β) ≤ sup{T (β0), for β0 ∈ Cβ(α)}] > 1− α. (5.7)

To obtain valid conservative confidence intervals for the individual component βj in regression equation

(3.31) and under assumption (3.33), we follow Coudin and Dufour (2009) by implementing a global

numerical optimization search algorithm to solve the problem

min
β∈R(k+1)

βj s.c. ŜNT (β0 | β1) < c̃1(β0,β1), max
β∈R(k+1)

βj s.c. ŜNT (β0 | β1) < c̃1(β0,β1),

(5.8)

where the critical value c(β0,β1) at level α, is computed using B replications of the statistic ŜN
(i)

T (β0 | β1)

under the null hypothesis and in turn finding its (1− α) quantile. Using projection techniques, multiple

tests maintain control of the overall level when performed on an arbitrary number of hypotheses.

5.1 Numerical illustration

Following Coudin and Dufour (2009), we illustrate the projection technique by generating a process

with sample size T = 500, such that

yt = β0 + β1x1,t−1 + β2x2,t−1 + εt, t = 1, · · · , T, εt
i.i.d∼

 N(0, 1) with probability 0.95

N(0, 1002) with probability 0.05
, (5.9)
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where β0 = β1 = β2 = 0 and

x1,t
x2,t

 =

θ1 0

0 θ2

x1,t−1
x2,t−1

+

u1,t
u2,t

 (5.10)

with θ1 = θ2 = 0.9. The initial vector variable (x1,t, x2,t)
′ is given by:

(
u1,0√
1−θ21

,
u2,0√
1−θ22

)′
and (u1,t, u2,t)

′

is generated according to N(0, I), where 0 is a 2× 1 zero vector and I is the identity matrix.

The exact inference procedure is conducted with B = 999 replications of the test statistic under the

null hypothesis. As β is a vector in three-dimensional space, the confidence region and the projections can

be illustrated graphically. The tests of H0(β
∗) : β = β∗ are performed on a 3D grid for β∗ = (β∗0,β

∗
1,β

∗
2).

Due to the curse of dimensionality encountered in the process of creating a grid for the parameters, the

simulated annealing optimization algorithm is initially used to solve problem (5.8) for each parameter

βi, to obtain a practical dimension of the grid size [see Goffe et al. (1994) for a review of the simulated

annealing algorithm].

Figure 1: 95% confidence region for the unknown vector β = (β0, β1, β2) obtained by searching a three-

dimensional grid β∗ using the 10% SS-POS test.

Note: The shaded regions on the β0 − β1 and β2 − β1 planes are the shadows casted by the three-
dimensional confidence region, which simplify the visual identification of the 95% confidence intervals for
each parameter βi.

The optimizations were performed using MATLAB software on a high-performance computing (HPC)
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cluster, by utilizing six nodes each equipped with Intel(R) Xeon(R) 16-core processors (2.40GHz). The

simulated annealing algorithm’s speed of adjustment was set to 0.25, with a temperature reduction factor

of 75%, an initial temperature of 50 and a convergence criteria of 0.01. All algorithms converged in

less than an hour. Once the global maxima and minima for each parameter βi were obtained, the grid

was constructed by the Cartesian product of the linearly spaced distance between the βi’s maxima and

minima.

Table 1: Comparison of the 95% confidence intervals obtained for the unknown parameters β0, β1 and

β2 using the 10% SS-POS-test, with those achieved using the t-test and t-test based on White (1980)

variance correction.

OLS White 10% SS-POS

β0 95% CI [-0.01, -0.00] [−0.01, 0.00] [−0.37, 0.55]

β1 95% CI [-1.04, -0.60] [-1.09, -0.56] [−0.05, 0.07]

β2 95% CI [0.47, 0.67] [0.45, 0.69] [−0.12, 0.16]

Note: The confidence intervals in bold do not contain the value of zero and imply significance at the 5%
level.

It is evident that the 10% split-sample POS-based test outperforms the t-test and the t-test based

on White (1980) variance correction test, as the former correctly fails to reject the null hypothesis of

orthogonality at the 5% level, whereas the latter two tests reject the null hypothesis in favor of the

alternative for almost all parameters.

6 Monte Carlo study

In this Section, we provide simulation results that illustrate the performance of the 10% SS-POS-

based tests proposed earlier. We have limited our results to two groups of data generating processes

(DGPs) which correspond to different symmetric and asymmetric distributions and different forms of

heteroskedasticity and serial non-linear dependence.

6.1 Simulation setup

We assess the performance of the proposed 10% SS-POS-based tests in terms of size control and

power, by considering various DGPs with symmetric and asymmetric distributions and different forms

of heteroskedasticity. The DGPs under consideration are supposed to mimic different scenarios that are
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often encountered in practical settings within the context of predictive regressions. The performance

of the 10% SS-POS test is compared to that of a few other tests, by considering the following linear

predictive regression model

yt = βxt−1 + εt, t = 1, · · · , T, (6.1)

where β is an unknown parameter. Furthermore, we follow Mankiw and Shapiro (1986) by assuming that

xt is a stationary AR(1) process

xt = θxt−1 + ut, , t = 1, · · · , T, (6.2)

such that ut are mutually independent, and each ut is independent of xt−k for k ≥ 1. Moreover, the

disturbances (εt, ut) are distributed as bivariate normal, with the contemporaneous covariance matrix

Σεu =

 1 σεu

σεu σ2u

 .
Therefore, there is feedback from ut to xt through εt, which implies that corr(εt, xt+k) 6= 0 for k ≥ 0.

Thus, as the disturbance vector [ε1, · · · , εT ]′ is not independent of the regressor vector [x0, · · · , xT−1]′, the

OLS estimator is biased in finite-samples and the t-statistic has a non-standard distribution. Mankiw and

Shapiro (1986) perform an extensive simulations exercise by considering different values of the correlation

between ut and εt (say ρ) and find that in small samples, as θ and ρ approach unity, the t-test using

asymptotic critical values leads to over rejection of the null hypothesis of unpredictability; however, the

size distortions improve as T →∞.

To compare the performance of certain parametric and nonparametric tests to that of the 10% SS-

POS-based test, the data is generated from model (6.1), with the stationary process xt specified as (6.2),

and by further setting

ut = ρεt + wt
√

1− ρ2 (6.3)

for ρ = 0, 0.1, 0.5, 0.9, where εt and wt are assumed to be independent. The initial value of x is given

by: x0 = w0√
1−θ2 . Further, wt are generated from N (0, 1) and we assign θ = 0.999.

The errors εt are i.n.i.d and are categorized by two groups in our simulation study. In the first group,

we consider DGPs where the error terms εt possess symmetric and asymmetric distributions:

1. normal distribution: εt ∼ N(0, 1);

2. Cauchy distribution: εt ∼ Cauchy;

3. Student t distribution with two degrees of freedom: εt ∼ t(2);
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4. Mixture of normal and Cauchy distributions: εt ∼ st|εCt | − (1 − st)|εNt |, where εCt follows Cauchy

distribution, εNt follows N(0, 1) distribution, and

P (st = 1) = P (st = 0) =
1

2
. (6.4)

The second group of DGPs represents different forms of heteroskedasticity:

5. break in variance:

εt ∼

 N(0, 1) for t 6= 25
√

1000N(0, 1) for t = 25
; (6.5)

6. exponential variance: εt ∼ N(0, σ2ε(t)) and σε(t) = exp(0.5t);

7. GARCH(1, 1) plus jump variance:

σ2ε(t) = 0.00037 + 0.0888ε2t−1 + 0.9024σ2ε(t− 1) , (6.6)

εt ∼

 N(0, σ2ε(t)) for t 6= 25

50N(0, σ2ε(t)) for t = 25
; (6.7)

8. nonstationary GARCH(1, 1) variance: εt ∼ N(0, σ2ε(t)) and

σ2ε(t) = 0.75ε2t−1 + 0.75σ2ε(t− 1) . (6.8)

We implement the 10% SS-POS-based test and other tests which are intended to be robust against

heteroskedasticity and non-normality, to test the null hypothesis of unpredictability - i.e. H0 : β = 0. As

in Dufour and Taamouti (2010), Monte Carlo simulations are used to compare the size and power of the

10% SS-POS test hereafter to that of the t-test, t-test based on White (1980) variance correction (hereafter

WT-test), and sign-based test proposed by Campbell and Dufour (1995) (CD (1995) test hereafter). The

simulation study involves M1 = 10, 000 iterations for evaluating the probability distribution of POS test

statistic and M2 = 5, 000 iterations to estimate the power functions of POS test and other tests. We

consider a sample size of T = 50 for conducting the simulation exercise. Note that the sign-based test

statistic of Campbell and Dufour (1995) possesses a discrete distribution, as a result of which it is not

possible (without randomization) to attain test whose size is exactly 5%. In our simulations study, the

size of the aforementioned test is 5.95% for T = 50.

As in Mankiw and Shapiro (1986), it is further possible to consider values of ρ and θ closer to unity at

which the size distortions of T-type tests are magnified. For instance, the size of the t-test in their study
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is shown to be severely distorted with values of θ = 0.999 and ρ = 1.0, given a sample size of T = 50.

The simulations for the latter scenario can be found in the Appendix for standard normal disturbances.

It must be noted that as the exact finite-sample distribution of the POS-based tests are simulated, our

tests control size regardless of the values of ρ and θ - the results in figure 8 confirm these findings. It is

further evident that although the size distortions for the t-test and t-test based on White (1980) variance

correction improve in large samples, these tests still reject the null hypothesis at twice and thrice their

nominal level respectively given a sample of n = 500 observations.

The DGPs considered in this paper have been inspired by the simulation exercises conducted in

previous studies [see Mankiw and Shapiro (1986), Campbell and Dufour (1995), Coudin and Dufour

(2009) and Dufour and Taamouti (2010)]. The first three DGPs all possess symmetrical distributions that

are independent and identical across different observations t = 1, · · · , T . The Cauchy and the Student’s

t distribution possess heavier tails in comparison to that of the normal distribution. The standard error

of the coefficients are inflated in the presence of heavy tails, as a result of which the power of the t-

type tests tend to be poor in comparison to other measures of central tendency (such as the median).

Furthermore, the length of the confidence intervals are extended when the data is sampled from heavy

tailed distributions. DGP 4 is a mixture of Cauchy and Gaussian distribution; as such, while the errors

are independent, they are not identically distributed across different observations. DGP 4 is inspired by

Magdalinos and Phillips (2009), who note that when xt is moderately explosive (with θ > 1), the least

squares estimator is mixed normal with Cauchy-type tail behavior and an explosive convergence rate. The

second group of DGPs covers different forms of heteroskedasticity, such as conditional heteroskedasticity

(e.g. stationary and non-stationary GARCH models) and other forms of nonlinear dependencies. Dufour

and Taamouti (2010) show that under certain forms of heteroskedasticity, t-type tests are not valid; hence,

these DGPs fit well within the domains of our study.

6.2 Simulation results

Monte Carlo simulation results are presented in Figures 2-6. These results correspond to different

DGPs described in Section 6.1. The figures compare the power of the 10% SS-POS test to the t-test,

WT-test, and CD (1995) test. The results are detailed below.

First, Figure 2 compares the power function of the above tests in the case where the error term εt

in model (6.1) is normally distributed. Evidently, all tests control size, except for the WT-test which is

undersized. We also find that t-test is more powerful than 10% SS-POS test, CD (1995) test, and the

WT-test. This result is expected since under normality t-test is the most powerful test. However, the

power of the 10% SS-POS test has the second greatest power among the other tests. These results hold
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Figure 2: Power comparisons: different tests. Normal error distributions with different values of ρ in

(6.3) and θ = 0.9 in (6.2).
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Note: These figures compare the power function of the 10% SS-POS test with: (1) the t-test; (2) the
sign-based test proposed by Campbell and Dufour (1995) [CD (1995) test]; and (3) the t-test based on
White’s (1980) variance correction [WT-test].
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Figure 3: Power comparisons: different tests. Student’s t(2) distributions with different values of ρ in

(6.3) and θ = 0.9 in (6.2).
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Note: These figures compare the power function of the 10% SS-POS test with: (1) the t-test; (2) the
sign-based test proposed by Campbell and Dufour (1995) [CD (1995) test]; and (3) the t-test based on
White’s (1980) variance correction [WT-test].
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when the correlation coefficient ρ is increased , except that when there is high correlation between the

error terms εt and wt the power curves of t-test, 10% SS-POS test and CD (1995) test get closer to one

another.

Second, Figure 4 corresponds to the scenario where the error term εt follows a Cauchy distribution.

We can observe that the 10% SS-POS test is more powerful than the CD (1995) test, WT-test, and the

t-test. It appears that the latter two tests are undersized. The 10% SS-POS test and CD (1995) test have

significantly greater power than the WT-test and the t-test for small values (0 and 0.1) of the correlation

coefficient ρ, but the difference in power decreases when we increase ρ.

Third, Figure 5 corresponds to the case where the error term εt follows a mixture of normal and

Cauchy distributions. The results suggest that the t-test is invalid, as it over rejects under the null

hypothesis of unpredictability for all values of ρ. Moreover, the 10% SS-POS test is again more powerful

than the CD (1995), t-test, and the WT-test. The difference in power is much more significant when the

correlation coefficient ρ is smaller.

Finally, Figures 6 compare the power function of the 10% SS-POS test, CD (1995) test, WT-test, and

t-test in the case where εt follows normal distribution with a break in variance. Figure 6 shows that in

the presence of break in variance, the WT-test and the t-test are undersized, whereas 10% SS-POS test

and CD (1995) test control size. In addition, 10% SS-POS test has more power that the other tests. The

CD (1995) test has the second best power, whereas the t-test and WT-test are plagued with poor power.

The power of these tests improve when the correlation coefficient is increased ρ.
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Figure 4: Power comparisons: different tests. Cauchy error distributions with different values of ρ in

(6.3) and θ = 0.9 in (6.2).
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Note: These figures compare the power function of the 10% SS-POS test with: (1) the t-test; (2) the
sign-based test proposed by Campbell and Dufour (1995) [CD (1995) test]; and (3) the t-test based on
White’s (1980) variance correction [WT-test].
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Figure 5: Power comparisons: different tests. Mixture error distributions with different values of ρ in

(6.3) and θ = 0.9 in (6.2).
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Note: These figures compare the power function of the 10% SS-POS test with: (1) the t-test; (2) the
sign-based test proposed by Campbell and Dufour (1995) [CD (1995) test]; and (3) the t-test based on
White’s (1980) variance correction [WT-test].
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Figure 6: Power comparisons: different tests. Normal error distributions with break in variance, different

values of ρ in (6.3) and θ = 0.9 in (6.2).
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Note: These figures compare the power function of the 10% SS-POS test with: (1) the t-test; (2) the
sign-based test proposed by Campbell and Dufour (1995) [CD (1995) test]; and (3) the t-test based on
White’s (1980) variance correction [WT-test].
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7 Empirical application

In this Section, we consider an empirical application of the proposed 10% SS-POS tests to illustrate

its practical relevance. Valuation ratios are widely considered as predictors of stock returns and are

generally known to be persistent. Therefore, they fit well within the framework of our study. In what

follows, we specifically divert our attention to an application in the context of stock return predictability

using the said ratios.

7.1 Stock return predictability using valuation ratios

Many studies have investigated the predictive power of valuation ratios on excess stock returns.

Dividend-price and earnings-price ratios are among few that were the focus of study in the early 1980s.

The attention to these ratios was heightened when Rozeff (1984), Fama and French (1988a), and Campbell

and Shiller (1988) showed the ratios positive correlation with ex-post stock returns. Fama and French

(1988a) find that in short horizons dividend yields only explain a small fraction of the variation in

time-varying returns, yet in longer horizons (beyond one year) this proportion is significantly increased.

Campbell and Shiller (1988) employ a two-variable system approach with the lagged log of the dividend-

price ratio together with the lagged real dividend growth rate, to show significant predictive power on

stock returns.

These studies are typically performed by regressing the excess returns on a constant and a lagged

variable. The conventional t-test is then used to make inference concerning predictability. However, most

of these studies are based on the presumption of the stationarity of the predictors, where the t-statistic is

approximately normally distributed in large samples. Unfortunately, this is not the case in the presence

of highly persistent variables. Even when the predictors are stationary, asymptotic critical values are

not a good approximation for those obtained in finite-sample distributions. In the presence of highly

persistent predictors, the innovations are greatly correlated with the returns, and thus, the t-statistic

has a non-standard distribution which leads to the over-rejection of the null hypothesis of orthogonality

[see. Elliott and Stock (1994), Mankiw and Shapiro (1986), Stambaugh (1999) and Campbell and Yogo

(2006)].

Most studies address the issue of persistency by making inference based on more accurate appro-

ximations of the finite-sample distribution of the test-statistic. This is accomplished either by relying on

exact finite-sample theory under the assumption of normality [see. Evans and Savin (1981, 1984) and

Stambaugh (1999)] or local-to-unity asymptotics [see Elliott and Stock (1994), Campbell and Yogo (2006)

and Torous et al. (2004)]. More recently Taamouti et al. (2014) confirm the predictability power of the

valuation ratios using monthly data, in a nonparametric and model-free copula-based Granger causality
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framework.

In this Section, we use our exact 10% SS-POS-based test to make inference and compare the predictive

power of the valuation ratios (dividend-price ratio, smoothed earnings-price ratio, and total return

smoothed earnings-price ratio) on stock market returns. The smoothed earnings-price ratio is proposed

by Campbell and Shiller (1988, 2001) upon observing numerous spikes in the plot of the earnings-price

ratio that had not been observed in the dividend-price ratio. The spikes were explained to be caused by

recessions, which temporarily suppress corporate earnings. The latter measure is the ratio of the ten-year

moving average of real earnings to current real prices and is said to possess better forecasting powers.

Furthermore, the total return smoothed earnings-price ratio is recently incorporated in forecasting, as

a consequence of the changes in corporate payout policy documented by Bunn et al. (2014) and Jivraj

and Shiller (2017). Share repurchases (as opposed to dividends) have become the dominant approach for

distributing cash to shareholders in the U.S. which may impact the smoothed earnings-price ratio through

changes in growth of earnings per share. The total return smoothed earnings-price ratio corrects for this

bias by reinvesting the dividends into the price index, such that the earnings per share is appropriately

scaled.

7.1.1 Data description

Our data consists of monthly and quarterly observations of the aggregate S&P500 composite index for

the period spanning from March 1980 to December 2019 for a total of 480 trading months or 160 trading

quarters. We consider the logarithmic returns on the S&P500 in excess of the 30-day and 90-day T-bill

rate. The valuation ratios under consideration are: dividend-price ratio, smoothed earnings-price ratio,

and total return smoothed earnings-price ratio. The nominal monthly and quarterly prices of the value-

weighted S&P500 composite index, as well as the corresponding dividends and earnings are obtained

from a database provided on Robert Shiller’s website. The 30-day and 90-day Treasury bill returns, on

the other hand, have been retrieved from the Center for Research in Security Prices (CRSP).

in different At first glance figure 7 suggests that the predictors under consideration are highly persistent

and potentially non-stationary. This visual assessment is confirmed in table 2, which presents the test

statistics for the augmented Dickey-Fuller test (ADF hereafter) for all the time series. Evidently, for the

full sample and the two sub-periods we fail to reject the null hypothesis of nonstationarity. The testing

procedure entails estimating and testing the model in its most general form using more deterministic

components than the hypothesized DGP (i.e. including both an intercept and a trend), and following

Phillips and Perron (1988) sequential testing strategy thereafter, eliminating the unnecessary nuisance

parameters in the process. At each stage, if the null hypothesis of orthogonality is rejected, we conclude
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Figure 7: Monthly and quarterly S&P500 excess stock returns, dividend-price, smoothed earnings-price

and total return smoothed earnings-price ratios.
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Note: The data spans from March 1980 to December 2019 for a total of 480 trading months and 160
trading quarters respectively. The red and the blue lines in turn correspond to the quarterly and monthly
samples. To assess the predictability power of the valuation ratios, we further consider two sub-periods
separated by the dashed line: one spanning from March 1980 to January 2002 and another in the period
of January 2002 to January 2019.
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that the model is correctly specified and that the process is stationary. Otherwise, the test is performed

on a more restricted model. This procedure is continued until we arrive at the most basic form of the

model (with no intercept or a trend), or until the null hypothesis of unit root is rejected. As it is evident,

all valuation ratios reject the null hypothesis of non-stationarity at the 5% level.

7.1.2 Predictability results

The projection technique based on the proposed 10% SS-POS test is used to build simultaneous

confidence sets for the parameters of the regressions of the excess returns against the dividend-price ratio,

smoothed earnings-price ratio of Campbell and Shiller (1988) and the total return smoothed earnings-price

ratio of Bunn et al. (2014) and Jivraj and Shiller (2017) respectively. The results for different sub-periods

and the full sample are reported in table 3. As explained in Section 5, each simultaneous confidence set is

obtained by collecting all pairs of (β0, β1) that are not rejected using our 10% SS-POS test. Thus, a grid

search is applied over an appropriate range2 and 95% level confidence sets are constructed by retaining all

the pairs (β0, β1) that are not rejected by the 10% SS-POS test. Alternatively, the simulated annealing

algorithm can be used to solve the optimization problem (5.8) for each parameter βi.

The 95% confidence intervals for the parameters β0 and β1 contain zero for the regressions of the

excess returns against all the predictors using the t-test based on White (1980) for all periods in our

study. However, using the 10% SS-POS based test, there is evidence of predictability in quarterly data

in favor of all predictors for the period spanning from January 2002 to January 2019. Our findings are

in line with those of Campbell and Yogo (2006) who do not find any evidence of predictability in favor

of any of the predictors in the period spanning from 1952-2002.

2See Section 5.1.
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Table 2: Results of the ADF test on the real and nominal time-series using the general-to-specific

sequential testing procedure

Series Obs. Predictor p δ + µ µ None

Panel A: 1980-2002

Monthly 264 rmt − r
f
t 1 −10.959∗∗∗ −− −−

d/pt 2 −2.217 −0.657 2.026

e/p
′
t 2 −2.248 −1.171 1.721

e/p
′′
t 2 −2.160 −1.376 1.544

Quarterly 88 rmt − r
f
t 0 −9.026∗∗∗ −− −−

d/pt 0 −2.209 −0.777 1.830

e/p
′
t 0 −1.816 −1.210 1.576

e/p
′′
t 0 −1.669 −1.400 1.391

Panel B: 2002-2019

Monthly 215 rmt − r
f
t 0 −11.369∗∗∗ −− −−

d/pt 1 −2.853 −2.983∗∗ −−
e/p

′
t 1 −2.317 −1.938 −0.027

e/p
′′
t 1 −2.389 −1.935 0.009

Quarterly 72 rmt − r
f
t 0 −7.513∗∗∗ −− −−

d/pt 1 −3.261∗ −3.278∗∗ −−
e/p

′
t 0 −2.374 −1.915 −0.095

e/p
′′
t 0 −2.448 −1.901 −0.057

Panel C: 1980-2019

Monthly 479 rmt − r
f
t 1 −14.347∗∗∗ −− −−

d/pt 2 −1.861 −2.104 0.935

e/p
′
t 2 −1.802 −2.042 1.136

e/p
′′
t 2 −1.965 −2.161 1.056

Quarterly 160 rmt − r
f
t 0 −11.848∗∗∗ −− −−

d/pt 0 −1.762 −2.051 0.876

e/p
′
t 0 −1.732 −1.995 1.084

e/p
′′
t 0 −1.897 −2.114 0.998

Note: This table reports the results of the ADF test on the time-series in the predictive
regression model. The appraoch involves using the general-to-specific sequential testing procedure
to test the null hypothesis of non-stationarity, where the general form of the model is:

∆xt = ρxt−1 +

p−1∑
i=1

ψi∆xt−i + µ+ δt+ ut, ut ∼ IID(0, σ2). (7.1).

The corresponding test statistics are reported in turn for the general form of the model (including the
trend δ and intercept c), the more restrictive form constituting only of an intercept c, and the case

where neither the trend nor the intercept are present. The variables are defined as follows: rmt − t
f
t are

the excess logarithmic stock returns, d/pt is the dividend-price ratio, e/p′t is the smoothed earnings-price
ratio and e/p′′t is the total return smoothed earnings-price ratio respectively. The statistics with three
asterisks (***), two asterisks (**) and one asterisk (*) are significant at the 1%, 5%. and the 10% levels
respectively.
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Table 3: Predictability results for the dividend-price, earnings-price and the smoothed earnings-price

ratios

Series Predictor β̂ 95% confidence interval

10% SS-POST WT-test
Panel A: 1980-2002
Monthly d/pt 0.002 [−0.024, 0.036] [−0.008, 0.011]

e/p
′
t -0.001 [−0.044, 0.046] [−0.009, 0.008]

e/p
′′
t -0.001 [−0.052, 0.049] [−0.010, 0.010]

Quarterly d/pt 0.009 [−0.104, 0.106] [−0.028, 0.047]

e/p
′
t 0.003 [−0.116, 0.104] [−0.029, 0.036]

e/p
′′
t 0.004 [−0.126, 0.104] [−0.033, 0.040]

Panel B: 2002-2019
Monthly d/pt 0.019 [−0.220, 0.330] [−0.015, 0.053]

e/p
′
t 0.012 [−0.079, 0.191] [−0.018, 0.042]

e/p
′′
t 0.010 [−0.080, 0.180] [−0.021, 0.040]

Quarterly d/pt 0.119 [0.159,0.899] [−0.001, 0.238]

e/p
′
t 0.089 [0.042,0.632] [−0.018, 0.197]

e/p
′′
t 0.084 [0.058,0.697] [−0.026, 0.194]

Panel C: 1980-2019
Monthly d/pt 0.002 [−0.041, 0.069] [−0.006, 0.010]

e/p
′
t 0.0003 [−0.021, 0.049] [−0.007, 0.007]

e/p
′′
t 0.0001 [−0.039, 0.061] [−0.008, 0.008]

Quarterly d/pt 0.136 [−0.094, 0.146] [−0.017, 0.044]

e/p
′
t 0.008 [−0.099, 0.121] [−0.020, 0.036]

e/p
′′
t 0.009 [−0.113, 0.147] [−0.023, 0.041]

Note: This table presents the coefficient estimates, as well as the 95% confidence intervals for the variables
considered in our study, by inverting the proposed 10% SS-POS-based tests and the t-test based on White
(1980) variance correction. The alternatives for the 10% SS-POS tests are obtained by running OLS
regressions of the excess returns against the dividend-price, smoothed earnings-price and the total return
smoothed earnings-price ratios. The regressions assume the form

rmt − r
f
t = β0 + β1xt−1 + εt, (7.2)

where rt is the ex-post excess returns and xt−1 is the ex-ante predictor. The projection-based 95%
confidence intervals for the 10% SS-POS tests are obtained by testing H0(β

∗) : β = β∗ on a grid for
β∗ = (β∗0 , β

∗
1), where the grid dimension is found by solving the optimization problem (5.8) for each

parameter β0 and β1 using the simulated annealing algorithm, and consequently equally dividing each
interval and finding their Cartesian product. The intervals in bold do not contain the value of zero and
imply significance at the 5% level.
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8 Conclusion

In this paper, we propose point-optimal sign-based tests for inference in linear and nonlinear predictive

regressions in the presence of stochastic (or fixed) regressors. One motivation is to build valid (control

the size whatever the sample size) tests for linear and nonlinear predictability of stock returns. The

most popular predictors of stock returns (e.g. dividend-price ratio, earning-price ratio, etc.) are known

to be persistent with errors that are correlated with the shock in the returns. This makes the classical

predictability tests invalid, particularly when the sample size is small or moderate. In addition, the

proposed sign-based tests are exact, distribution-free and robust against heteroskedasticity of unknown

form, and further allow for serial (nonlinear) dependence. Additionally, they may be inverted to build

confidence regions for the parameters of the regression function. Since the point-optimal sign-based

tests depend on the alternative hypothesis, an adaptive approach based on the split-sample technique is

suggested to choose the appropriate alternative that controls the size and maximizes the power.

We presented a Monte Carlo study to assess the performance of the proposed “quasi”-point-optimal

sign test by comparing its size and power to those of certain existing tests that are intended to be

robust against heteroskedasticity. We considered different DGPs to illustrate different contexts that one

can encounter in practice. The results show that the 10% split-sample point-optimal sign test is more

powerful than the t-test, Campbell and Dufour (1995) sign-based test, and the t-test based on White

(1980) variance correction.

Finally, the proposed tests are used to assess the predictive power of some financial predictors, such as

the dividend-price and earnings-price ratios, as well as the smoothed earnings-price ratio of Campbell and

Shiller (1988, 2001) on the annualized monthly excess stock returns. Our study suggests predictability

in favor of all the predictors for the quarterly data in the period spanning from 2002 to 2009, which is

consistent with the findings of Campbell and Yogo (2006). We further reaffirm the findings of Campbell

and Yogo (2006) who do not find any evidence of predictability in favor of any of the predictors in the

period spanning from 1952-2002.
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9 Appendix: Proofs

Proof of Theorem 1. From Assumption (2.3), the equalities (9.1) and (9.2) are derived as follows

P [εt ≥ 0 | X] = E (P [εt ≥ 0 | εt−1, X]) =
1

2
(9.1)

with

ε0 = {∅}, εt−1 = {ε1, · · · , εt−1}, for t ≥ 2

and

P [εt ≥ 0 | S
¯
ε
t−1, X] = P [εt ≥ 0 | εt−1, X] =

1

2
, (9.2)

with

S
¯
ε
0 = {∅} , S

¯
ε
t−1 = {s(ε1) = s1, · · · , s(εt−1) = st−1} , for t ≥ 2,

We define the vector of signs U(T ) = (s(y1), · · · , s(yT ))′, where s(yt) = 1R+∪0{yt}. Thus, given model

(2.1), under the null hypothesis of unpredictability, (s(y1), · · · , s(yT ))′ is equivalent to the signs of error

terms (s(ε1), · · · , s(εT ))′. Thus, under the null hypothesis, the likelihood function of the sample in terms

of the signs is given by

L(U(T ),0, X) = P [s(y1) = s1, · · · , s(yT ) = sT | X]

= P [s(ε1) = s1, · · · , s(εT ) = sT | X]

=
T∏
t=1

P [εt ≥ 0 | εt−1, X]s(εt) (1− P [εt ≥ 0 | εt−1, X])1−s(εt)

=

T∏
t=1

(
1

2

)s(εt)(
1− 1

2

)1−s(εt)

=

(
1

2

)T
Hence, it can be concluded that conditional on X and under the null hypothesis of orthogonality

s(y1), · · · , s(yT )
i.i.d∼ Bi(1, 0.5).

Proof of Proposition 1. The likelihood function of sample in terms of signs s(y1), · · · , s(yT )

L (U(T ),β, X) = P [s(y1) = s1, · · · , s(yT ) = sT | X] =
T∏
t=1

P
(
s(yt) = st | S

¯t−1
, X
)
,

for

S
¯0 = {∅} , S

¯t−1
= {s(y1) = s1, · · · , s(yt−1) = st−1} , for t ≥ 2,
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and

P [s(y1) = s1 | S
¯0, X] = P [s(y1) = s1 | X] ,

where each st, for 1 ≤ t ≤ T , takes two possible values 0 and 1. According to model (2.1) and assumption

(2.3), under the null hypothesis the signs s(y1), · · · , s(yT ) are i.i.d according to Bi(1, 0.5),

P [s(yt) = 1 | X] = P [s(yt) = 0 | X] =
1

2
, for t = 1, · · · , T,

Consequently, under H0

L0 (U(T ),0, X) =

T∏
t=1

P [s(yt) = st | X] =

(
1

2

)T

and under H1 we have

L1 (U(T ),β1, X) =

T∏
t=1

P
[
s(yt) = st | S

¯t−1
, X
]

where now, for t = 1, · · · , T,

yt = β′1xt−1 + εt

The log-likelihood ratio is given by

ln

{
L1 (U(T ),β1, X)

L0 (U(T ),0, X)

}
=

T∑
t=1

ln
{
P
[
s(yt) = st | S

¯t−1
, X
]}
− T ln

{
1

2

}
.

According to Neyman-Pearson lemma [see e.g. Lehmann (1959), page 65], the best test to test H0 against

H1, based on s(y1), · · · , s(yT ), rejects H0 when

ln

{
L1 (U(T ),β1, X)

L0 (U(T ),0, X)

}
≥ c

or when
T∑
t=1

ln
{
P
[
s(yt) = st | S

¯t−1
, X
]}
≥ c,

The critical value, say c, is given by the smallest constant c such that

P

(
ln

{
L1 (U(T ),β1, X)

L0 (U(T ),0, X)

}
> c | H0

)
≤ α.

Notice that, for t = 1, · · · , T

P
[
s(yt) = st | S

¯t−1
, X
]

= P
[
yt ≥ 0 | S

¯t−1
, X
]s(yt) P [yt < 0 | S

¯t−1
, X
](1−s(yt)) , for t = 1, · · · , T. (9.3)
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From (9.3), we have

ln

{
T∏
t=1

P
[
s(yt) = st | S

¯t−1
, X
]}

= ln

{
T∏
t=1

P [yt ≥ 0 | S
¯t−1

, X]s(yt)P [yt < 0 | S
¯t−1

, X](1−s(yt))

}

=

T∑
t=1

s(yt) ln
{
P
[
yt ≥ 0 | S

¯t−1
, X
]}

= +

T∑
t=1

(1− s(yt)) ln
{
P [yt < 0 | S

¯t−1
, X]

}
ln

{
T∏
t=1

P
[
s(yt) = st | S

¯t−1
, X
]}

=

T∑
t=1

s(yt) ln
{
P
[
yt ≥ 0 | S

¯t−1
, X
]}

+

T∑
t=1

ln
{
P [yt < 0 | S

¯t−1
, X]

}
=−

T∑
t=1

s(yt) ln
{
P [yt < 0 | S

¯t−1
, X]

}
=

T∑
t=1

s(yt) ln

{
P
[
yt ≥ 0 | S

¯t−1
, X
]

P
[
yt < 0 | S

¯t−1
, X
]}+

T∑
t=1

ln
{
P [yt < 0 | S

¯t−1
, X]

}
Thus, the best test to test H0 against H1, based on s(y1), · · · , s(yT ), rejects H0 when

ln

{
L1 (U(T ),β1, X)

L0 (U(T ),0, X)

}
=

T∑
t=1

s(yt) ln

{
P
[
yt ≥ 0 | S

¯t−1
, X
]

P
[
yt < 0 | S

¯t−1
, X
]}+

T∑
t=1

ln
{
P [yt < 0 | S

¯t−1
, X]

}
−T ln

{
1

2

}
≥ c

or when

ln

{
L1 (U(T ),β1, X)

L0 (U(T ),0, X)

}
=

T∑
t=1

s(yt) ln

{
P
[
yt ≥ 0 | S

¯t−1
, X
]

P
[
yt < 0 | S

¯t−1
, X
]} ≥ c1(β1)

where the critical value c1(β1) is chosen so that

P [ST (β1) > c1(β1) | H0] ≤ α

α is an arbitrary significance level.

Proof of Corollary 1. From test statistic ST (β1) in Proposition 1 and under assumption A1, we

have:

S̃T (β1) =
T∑
t=1

s(yt) ln

{
P
[
yt ≥ 0 | S

¯t−1
, X
]

P
[
yt < 0 | S

¯t−1
, X
]}

=
T∑
t=1

s(yt)
{

ln
{
P
[
yt ≥ 0 | S

¯t−1
, X
]}
− ln

{
P
[
yt < 0 | S

¯t−1
, X
]}}

=
T∑
t=1

s(yt)

 ln
{
P [yt ≥ 0 | yt−1 ≥ 0, X]s(yt−1) P [yt ≥ 0 | yt−1 < 0, X]1−s(yt−1)

}
− ln

{
P [yt < 0 | yt−1 ≥ 0, X]s(yt−1) P [yt < 0 | yt−1 < 0, X]1−s(yt−1)

}

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=
T∑
t=1

s(yt)

 s(yt−1) ln {P [yt ≥ 0 | yt−1 ≥ 0, X]}+ (1− s(yt−1)) ln {P [yt ≥ 0 | yt−1 < 0, X]}

−s(yt−1) ln {P [yt < 0 | yt−1 ≥ 0, X]} − (1− s(yt−1)) ln {P [yt < 0 | yt−1 < 0, X]}


Observe that:

ln

{
P
[
yt ≥ 0 | S

¯t−1
, X
]

P
[
yt < 0 | S

¯t−1
, X
]} = ln

{
P [yt ≥ 0 | yt−1 ≥ 0, X]s(yt−1) P [yt ≥ 0 | yt−1 < 0, X]1−s(yt−1)

}
=− ln

{
P [yt < 0 | yt−1 ≥ 0, X]s(yt−1) P [yt < 0 | yt−1 < 0, X]1−s(yt−1)

}
= s(yt−1) ln {P [yt ≥ 0 | yt−1 ≥ 0, X]}

= + (1− s(yt−1)) ln {P [yt ≥ 0 | yt−1 < 0, X]}

=− s(yt−1) ln {P [yt < 0 | yt−1 ≥ 0, X]}

=− (1− s(yt−1)) ln {P [yt < 0 | yt−1 < 0, X]}

ln

{
P
[
yt ≥ 0 | S

¯t−1
, X
]

P
[
yt < 0 | S

¯t−1
, X
]} = s(yt−1) ln {P [yt ≥ 0 | yt−1 ≥ 0, X]}+ ln {P [yt ≥ 0 | yt−1 < 0, X]}

=− s(yt−1) ln {P [yt ≥ 0 | yt−1 < 0, X]} − s(yt−1) ln {P [yt < 0 | yt−1 ≥ 0, X]}

=− ln {P [yt < 0 | yt−1 < 0, X]}+ s(yt−1) ln {P [yt < 0 | yt−1 < 0, X]}

ln

{
P
[
yt ≥ 0 | S

¯t−1
, X
]

P
[
yt < 0 | S

¯t−1
, X
]} = s(yt−1)

{
ln

{
P [yt ≥ 0 | yt−1 ≥ 0, X]

P [yt < 0 | yt−1 ≥ 0, X]

}
− ln

{
P [yt ≥ 0 | yt−1 < 0, X]

P [yt < 0 | yt−1 < 0, X]

}}
= + ln

{
P [yt ≥ 0 | yt−1 < 0, X]

P [yt < 0 | yt−1 < 0, X]

}

Hence,

S̃T (β1) =

T∑
t=1

s(yt) ln

{
P
[
yt ≥ 0 | S

¯t−1
, X
]

P
[
yt < 0 | S

¯t−1
, X
]}

=
T∑
t=1

s(yt)

 s(yt−1)
{

ln
{
P [yt≥0|yt−1≥0,X]
P [yt<0|yt−1≥0,X]

}
− ln

{
P [yt≥0|yt−1<0,X]
P [yt<0|yt−1<0,X]

}}
+ ln

{
P [yt≥0|yt−1<0,X]
P [yt<0|yt−1<0,X]

}


=

T∑
t=1

s(yt) ln

{
P [yt ≥ 0 | yt < 0, X]

P [yt < 0 | yt < 0, X]

}
+

T∑
t=1

s(yt)s(yt−1)

 ln
{
P [yt≥0|yt−1≥0,X]
P [yt<0|yt−1≥0,X]

}
− ln

{
P [yt≥0|yt−1<0,X]
P [yt<0|yt−1<0,X]

}


=
T∑
t=1

at s(yt) +

T∑
t=1

bt s(yt)s(yt−1)

where

ã1 = ln

{
P [y1 ≥ 0 | X]

P [y1 < 0 | X]

}
= ln

{
1− P [ε1 < −β′1x0 | X]

P [ε1 < −β′1x0 | X]

}
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b̃1 = ln

{
P [y1 ≥ 0 | X]

P [y1 < 0 | X]

}
− ln

{
P [y1 ≥ 0 | X]

P [y1 < 0 | X]

}
= 0

and for t = 2, · · · , T

at = ln

{
P [yt ≥ 0 | yt < 0, X]

P [yt < 0 | yt < 0, X]

}
,

bt = ln

{
P [yt ≥ 0 | yt−1 ≥ 0, X]

P [yt < 0 | yt−1 ≥ 0, X]

}
− ln

{
P [yt ≥ 0 | yt−1 < 0, X]

P [yt < 0 | yt−1 < 0, X]

}
.

Observe that:

P [yt ≥ 0 | yt−1 < 0, X] = 1− P [yt < 0 | yt−1 < 0, X]

= 1− P [yt < 0, yt−1 < 0 | X]

P [yt−1 < 0 | X]

= 1− P [εt < −β′1xt−1, εt−1 < −β′1xt−2 | X]

P [εt−1 < −β′1xt−2 | X]
,

P [yt < 0 | yt−1 < 0, X] =
P [yt < 0, yt−1 < 0 | X]

P [yt−1 < 0 | X]

=
P [εt < −β′1xt−1, εt−1 < −β′1xt−2 | X]

P [εt−1 < −β′1xt−2 | X]

P [yt ≥ 0 | yt−1 ≥ 0, X] = 1− P [yt < 0 | yt−1 ≥ 0, X]

= 1− P [yt < 0, yt−1 ≥ 0 | X]

P [ yt−1 ≥ 0 | X]

= 1− P [yt < 0 | X]

P [ yt−1 ≥ 0 | X]
(P [ yt−1 ≥ 0 | yt < 0, X])

= 1− P [yt < 0 | X]

P [ yt−1 ≥ 0 | X]
(1− P [ yt−1 < 0 | yt < 0, X])

= 1−
(

P [yt < 0 | X]

P [ yt−1 ≥ 0 | X]
− P [ yt−1 < 0, yt < 0 | X]

P [ yt−1 ≥ 0 | X]

)
= 1−

(
P [yt < 0 | X]

1− P [yt−1 < 0 | X]
− P [ yt−1 < 0, yt < 0 | X]

1− P [yt−1 < 0 | X]

)

= 1−

 P
[
εt < −β

′
1xt−1 | X

]
1− P

[
εt−1 < −β

′
1xt−2 | X

] − P
[
εt−1 < −β′1xt−2, εt < −β

′
1xt−1 | X

]
1− P

[
εt−1 < −β

′
1xt−2 | X

]


P [yt < 0 | yt−1 ≥ 0, X] =
P [yt < 0, yt−1 ≥ 0 | X]

P [yt−1 ≥ 0 | X]

=
P [yt−1 ≥ 0 | yt < 0, X]P [yt < 0 | X]

P [yt−1 ≥ 0 | X]

=
P [yt < 0 | X]

P [yt−1 ≥ 0 | X]
(1− P [yt−1 < 0 | yt < 0, X])

=
P [yt < 0 | X]

1− P [yt < 0 | X]
− P [yt−1 < 0, yt < 0 | X]

1− P [yt < 0 | X]
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= 1− P [yt ≥ 0 | yt−1 ≥ 0, X]

We also have:

ã1 = ln

{
P [y1 ≥ 0 | X]

P [y1 < 0 | X]

}
= ln

{
1− P [y1 < 0 | X]

P [y1 < 0 | X]

}

= ln

1− P
[
ε1 < −β

′
1x0 | X

]
P [ε1 < −β′1x0 | X]


b̃1 = ln

{
P [y1 ≥ 0 | X]

P [y1 < 0 | X]

}
− ln

{
P [y1 ≥ 0 | X]

P [y1 < 0 | X]

}
= 0
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Additional simulations.

Figure 8: Power comparisons: different tests. Normal distributions with contemporaneous correlation of

ρ = 1, in (6.3) and local-to-unity autoregression parameter θ = 0.999, in (6.2) for different sample sizes.
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Note: These figures compare the power function of the 10% SS-POS test with: (1) the t-test; (2) the
sign-based test proposed by Campbell and Dufour (1995) [CD (1995) test]; and (3) the t-test based on
White’s (1980) variance correction [WT-test].
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