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2 CauchyDGP

BIVDGP Normal errors with break in variance

Description

The processes y and z are generated by a predictive regression of the form y; = Sx;—1 + &; for
t =1,---,T, in which the regressors follow an AR(1) process - i.e. ; = 0x;_1 + u;. The pre-
dictor’s errors are distributed according to u; ~ N (0, 1), whereas the disturbances of the predictive
regression, ;, are distributed &, ~ N(0,1) for t # T/2 and ¢; ~ 1000N(0,1) for t = T/2
respectively. An example of standard Normal disturbances with break in variance can be found

Wo

in Dufour and Taamouti (2010). The initial value of the process x is generated by z¢ = AL

where w; ~ N (0, 1). Finally, the contemporaneous correlation between the disturbances ¢; and u,
is captured by pe; + wiy/1 — p2.

Usage
BIVDGP(n, beta, theta, rho)

Arguments
n the number of observations
beta the regressor coefficient of the predictive regression
theta the autocorrelation coefficient of the predictor
rho the contemporaneous correlation coefficient
References

Dufour J, Taamouti A (2010). “Exact optimal inference in regression models under heteroskedas-
ticity and non-normality of unknown form.” Computational Statistics \& Data Analysis, 54(11),
2532-2553.

Examples

BIVDGP(n=50, beta=0.5, theta=0.999, rho=0.9)

CauchyDGP Cauchy errors

Description

The processes y and = are generated by a predictive regression of the form y; = Sx;_1 + €; for
t = 1,---,T, in which the regressors follow an AR(1) process - i.e. x; = 0x;_1 + us. The pre-
dictor’s errors are distributed according to u; ~ N (0, 1), whereas the disturbances of the predictive
regression, ¢, are distributed £, ~ Cauchy. An example of a predictive regression DGP with
Cauchy perturbations can be found in Campbell and Dufour (1995). The initial value of the process

z is generated by z¢p = \/f)_OW’ where w; ~ N(0,1). Finally, the contemporaneous correlation

between the disturbances ¢; and u; is captured by pe; + wi/1 — p2.
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Usage

CauchyDGP(n, beta, theta, rho)

Arguments
n the number of observations
beta the regressor coefficient of the predictive regression
theta the autocorrelation coefficient of the predictor
rho the contemporaneous correlation coefficient
References

Campbell B, Dufour J (1995). “Exact nonparametric orthogonality and random walk tests.” The
Review of Economics and Statistics, 77(1 ), 1-16.

Examples

CauchyDGP(n=50, beta=0.5, theta=0.999, rho=0.9)

ExpVarDGP Normal errors with exponential variance

Description

The processes y and = are generated by a predictive regression of the form y; = Sx;_1 + €; for
t = 1,---,T, in which the regressors follow an AR(1) process - i.e. x; = 0x;_1 + us. The pre-
dictor’s errors are distributed according to u; ~ N (0, 1), whereas the disturbances of the predictive
regression, ¢, are distributed &, ~ N(0,07), where o, = exp(0.5t). Examples of DGPs with
Normal disturbances and exponential variance can be found in Dufour and Taamouti (2010) and

w

Coudin and Dufour (2009). The initial value of the process x is generated by x¢ = ﬁ, where

wy ~ N(0,1). Finally, the contemporaneous correlation between the disturbances e; and wu; is

captured by pe; + wi/1 — p2.

Usage

ExpVarDGP(n, beta, theta, rho)

Arguments
n the number of observations
beta the regressor coefficient of the predictive regression
theta the autocorrelation coefficient of the predictor

rho the contemporaneous correlation coefficient



4 GarchDGP

References

Coudin E, Dufour J (2009). “Finite-sample distribution-free inference in linear median regressions
under heteroscedasticity and non-linear dependence of unknown form.” The Econometrics Journal,
12, S19-S49.

Dufour J, Taamouti A (2010). “Exact optimal inference in regression models under heteroskedas-
ticity and non-normality of unknown form.” Computational Statistics \& Data Analysis, 54(11),
2532-2553.

Examples

ExpVarDGP(n=50, beta=0.5, theta=0.999, rho=0.9)

GarchDGP Normal errors with stationary GARCH(1,1) variance

Description

The processes y and z are generated by a predictive regression of the form y, = Sx;—1 + &; for
t =1,---,T, in which the regressors follow an AR(1) process - i.e. ; = 0x;_1 + u;. The pre-
dictor’s errors are distributed according to u; ~ N (0, 1), whereas the disturbances of the predictive
regression, &, are distributed &, ~ N(0,0?), where 02 = 0.00037 + 0.0888:?_; + 0.902407 .
Examples of DGPs with Normal disturbances and stationary GARCH(1,1) variance can be found
in Dufour and Taamouti (2010) and Coudin and Dufour (2009). The initial value of the process x is

generated by z¢ = \/%, where w; ~ N(0, 1). Finally, the contemporaneous correlation between

the disturbances &; and u; is captured by pe; + w;+/1 — p2.

Usage
GarchDGP(n, beta, theta, rho)

Arguments
n the number of observations
beta the regressor coefficient of the predictive regression
theta the autocorrelation coefficient of the predictor
rho the contemporaneous correlation coefficient
References

Coudin E, Dufour J (2009). “Finite-sample distribution-free inference in linear median regressions
under heteroscedasticity and non-linear dependence of unknown form.” The Econometrics Journal,
12, S19-S49.

Dufour J, Taamouti A (2010). “Exact optimal inference in regression models under heteroskedas-
ticity and non-normality of unknown form.” Computational Statistics \& Data Analysis, 54(11),
2532-2553.
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Examples

GarchDGP(n=50, beta=0.5, theta=0.999, rho=0.9)

MixtureDGP Mixture of Cauchy and Normal errors

Description

The processes y and = are generated by a predictive regression of the form y; = Sx;—1 + &; for
t = 1,---,T, in which the regressors follow an AR(1) process - i.e. x; = 0x;_1 + us. The pre-
dictor’s errors are distributed according to u; ~ N (0, 1), whereas the disturbances of the predictive
regression, ¢, are distributed g, ~ s4|e¥’| — (1 — s;)|eY|, where P(s; = 0) = P(s; = 1) = 0.5 for
all t. An example of a DGP with mixture perturbations can be found in Dufour and Taamouti (2010).
The initial value of the process x is generated by xy = \A"_OW, where w; ~ N(0, 1). Finally, the

contemporaneous correlation between the disturbances ¢; and u; is captured by pe; + wiy/1 — p2.

Usage

MixtureDGP(n, beta, theta, rho)

Arguments
n the number of observations
beta the regressor coefficient of the predictive regression
theta the autocorrelation coefficient of the predictor
rho the contemporaneous correlation coefficient
References

Dufour J, Taamouti A (2010). “Exact optimal inference in regression models under heteroskedas-
ticity and non-normality of unknown form.” Computational Statistics \& Data Analysis, 54(11),
2532-2553.

Examples

MixtureDGP(n=50, beta=0.5, theta=0.999, rho=0.9)



6 StudentDGP

NormalDGP Standard normal errors

Description

The processes y and = are generated by a predictive regression of the form y; = Sx;_1 + &; for

= 1,---,T, in which the regressors follow an AR(1) process - i.e. z; = 0z;_1 + us. The pre-
dictor’s errors are distributed according to u; ~ N (0, 1), whereas the disturbances of the predictive
regression, &, are distributed &, ~ N(0,1). The initial value of the process x is generated by
To = \/%, where w; ~ N(0,1). Finally, the contemporaneous correlation between the distur-

bances ¢; and u; is captured by u; = pe; + wi/1 — p2.

Usage

NormalDGP(n, beta, theta, rho)

Arguments
n the number of observations
beta the regressor coefficient of the predictive regression
theta the autocorrelation coefficient of the predictor
rho the contemporaneous correlation coefficient
References

There are no references for Rd macro \insertAllCites on this help page.

Examples

NormalDGP(n=50, beta=0.5, theta=0.999, rho=0.9)

StudentDGP Student’s t(2) errors

Description

The processes y and x are generated by a predictive regression of the form y; = 6 + x;_1 +
gt fort = 1,--- T, in which the regressors follow an AR(1) process - i.e. x; = Ox;_1 + us.
The predictor’s errors are distributed according to u; ~ N(0,1), whereas the disturbances of the
predictive regression, ¢y, are distributed £, ~ t(2). An example of a predictive regression DGP with
t(3) perturbations can be found in Campbell and Dufour (1995). Outside a predictive regression
framework, #(2) disturbances have further been considered in Dufour and Taamouti (2010). The

initial value of the process x is generated by zo = \/YJ—OT’ where wy; ~ N(0,1). Finally, the

contemporaneous correlation between the disturbances ¢; and u; is captured by pe; + wiy/1 — p2.




StudentDGP

Usage

StudentDGP(n, beta, theta, rho)

Arguments

n
beta
theta

rho

References

the number of observations
the regressor coefficient of the predictive regression
the autocorrelation coefficient of the predictor

the contemporaneous correlation coefficient

Campbell B, Dufour J (1995). “Exact nonparametric orthogonality and random walk tests.” The
Review of Economics and Statistics, 77(1 ), 1-16.

Dufour J, Taamouti A (2010). “Exact optimal inference in regression models under heteroskedas-
ticity and non-normality of unknown form.” Computational Statistics \& Data Analysis, 54(11),

2532-2553.

Examples

StudentDGP(n=50, beta=0.5, rho=0.999, theta=0.9)
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