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2 CauchyDGP

BIVDGP Normal errors with break in variance

Description

The processes y and x are generated by a predictive regression of the form yt = βxt−1 + εt for
t = 1, · · · , T , in which the regressors follow an AR(1) process - i.e. xt = θxt−1 + ut. The pre-
dictor’s errors are distributed according to ut ∼ N(0, 1), whereas the disturbances of the predictive
regression, εt, are distributed εt ∼ N(0, 1) for t 6= T/2 and εt ∼ 1000N(0, 1) for t = T/2
respectively. An example of standard Normal disturbances with break in variance can be found
in Dufour and Taamouti (2010). The initial value of the process x is generated by x0 = w0√

1−θ2 ,
where wt ∼ N(0, 1). Finally, the contemporaneous correlation between the disturbances εt and ut
is captured by ρεt + wt

√
1− ρ2.

Usage

BIVDGP(n, beta, theta, rho)

Arguments

n the number of observations
beta the regressor coefficient of the predictive regression
theta the autocorrelation coefficient of the predictor
rho the contemporaneous correlation coefficient

References

Dufour J, Taamouti A (2010). “Exact optimal inference in regression models under heteroskedas-
ticity and non-normality of unknown form.” Computational Statistics \& Data Analysis, 54(11),
2532–2553.

Examples

BIVDGP(n=50, beta=0.5, theta=0.999, rho=0.9)

CauchyDGP Cauchy errors

Description

The processes y and x are generated by a predictive regression of the form yt = βxt−1 + εt for
t = 1, · · · , T , in which the regressors follow an AR(1) process - i.e. xt = θxt−1 + ut. The pre-
dictor’s errors are distributed according to ut ∼ N(0, 1), whereas the disturbances of the predictive
regression, εt, are distributed εt ∼ Cauchy. An example of a predictive regression DGP with
Cauchy perturbations can be found in Campbell and Dufour (1995). The initial value of the process
x is generated by x0 = w0√

1−θ2 , where wt ∼ N(0, 1). Finally, the contemporaneous correlation

between the disturbances εt and ut is captured by ρεt + wt
√

1− ρ2.
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Usage

CauchyDGP(n, beta, theta, rho)

Arguments

n the number of observations

beta the regressor coefficient of the predictive regression

theta the autocorrelation coefficient of the predictor

rho the contemporaneous correlation coefficient

References

Campbell B, Dufour J (1995). “Exact nonparametric orthogonality and random walk tests.” The
Review of Economics and Statistics, 77(1 ), 1–16.

Examples

CauchyDGP(n=50, beta=0.5, theta=0.999, rho=0.9)

ExpVarDGP Normal errors with exponential variance

Description

The processes y and x are generated by a predictive regression of the form yt = βxt−1 + εt for
t = 1, · · · , T , in which the regressors follow an AR(1) process - i.e. xt = θxt−1 + ut. The pre-
dictor’s errors are distributed according to ut ∼ N(0, 1), whereas the disturbances of the predictive
regression, εt, are distributed εt ∼ N(0, σ2

t ), where σt = exp(0.5t). Examples of DGPs with
Normal disturbances and exponential variance can be found in Dufour and Taamouti (2010) and
Coudin and Dufour (2009). The initial value of the process x is generated by x0 = w0√

1−θ2 , where
wt ∼ N(0, 1). Finally, the contemporaneous correlation between the disturbances εt and ut is
captured by ρεt + wt

√
1− ρ2.

Usage

ExpVarDGP(n, beta, theta, rho)

Arguments

n the number of observations

beta the regressor coefficient of the predictive regression

theta the autocorrelation coefficient of the predictor

rho the contemporaneous correlation coefficient



4 GarchDGP

References

Coudin E, Dufour J (2009). “Finite-sample distribution-free inference in linear median regressions
under heteroscedasticity and non-linear dependence of unknown form.” The Econometrics Journal,
12, S19–S49.

Dufour J, Taamouti A (2010). “Exact optimal inference in regression models under heteroskedas-
ticity and non-normality of unknown form.” Computational Statistics \& Data Analysis, 54(11),
2532–2553.

Examples

ExpVarDGP(n=50, beta=0.5, theta=0.999, rho=0.9)

GarchDGP Normal errors with stationary GARCH(1,1) variance

Description

The processes y and x are generated by a predictive regression of the form yt = βxt−1 + εt for
t = 1, · · · , T , in which the regressors follow an AR(1) process - i.e. xt = θxt−1 + ut. The pre-
dictor’s errors are distributed according to ut ∼ N(0, 1), whereas the disturbances of the predictive
regression, εt, are distributed εt ∼ N(0, σ2

t ), where σ2
t = 0.00037 + 0.0888ε2t−1 + 0.9024σ2

t−1.
Examples of DGPs with Normal disturbances and stationary GARCH(1,1) variance can be found
in Dufour and Taamouti (2010) and Coudin and Dufour (2009). The initial value of the process x is
generated by x0 = w0√

1−θ2 , where wt ∼ N(0, 1). Finally, the contemporaneous correlation between

the disturbances εt and ut is captured by ρεt + wt
√
1− ρ2.

Usage

GarchDGP(n, beta, theta, rho)

Arguments

n the number of observations

beta the regressor coefficient of the predictive regression

theta the autocorrelation coefficient of the predictor

rho the contemporaneous correlation coefficient

References

Coudin E, Dufour J (2009). “Finite-sample distribution-free inference in linear median regressions
under heteroscedasticity and non-linear dependence of unknown form.” The Econometrics Journal,
12, S19–S49.

Dufour J, Taamouti A (2010). “Exact optimal inference in regression models under heteroskedas-
ticity and non-normality of unknown form.” Computational Statistics \& Data Analysis, 54(11),
2532–2553.
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Examples

GarchDGP(n=50, beta=0.5, theta=0.999, rho=0.9)

MixtureDGP Mixture of Cauchy and Normal errors

Description

The processes y and x are generated by a predictive regression of the form yt = βxt−1 + εt for
t = 1, · · · , T , in which the regressors follow an AR(1) process - i.e. xt = θxt−1 + ut. The pre-
dictor’s errors are distributed according to ut ∼ N(0, 1), whereas the disturbances of the predictive
regression, εt, are distributed εt ∼ st|εCt | − (1− st)|εNt |, where P (st = 0) = P (st = 1) = 0.5 for
all t. An example of a DGP with mixture perturbations can be found in Dufour and Taamouti (2010).
The initial value of the process x is generated by x0 = w0√

1−θ2 , where wt ∼ N(0, 1). Finally, the

contemporaneous correlation between the disturbances εt and ut is captured by ρεt + wt
√
1− ρ2.

Usage

MixtureDGP(n, beta, theta, rho)

Arguments

n the number of observations

beta the regressor coefficient of the predictive regression

theta the autocorrelation coefficient of the predictor

rho the contemporaneous correlation coefficient

References

Dufour J, Taamouti A (2010). “Exact optimal inference in regression models under heteroskedas-
ticity and non-normality of unknown form.” Computational Statistics \& Data Analysis, 54(11),
2532–2553.

Examples

MixtureDGP(n=50, beta=0.5, theta=0.999, rho=0.9)
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NormalDGP Standard normal errors

Description

The processes y and x are generated by a predictive regression of the form yt = βxt−1 + εt for
t = 1, · · · , T , in which the regressors follow an AR(1) process - i.e. xt = θxt−1 + ut. The pre-
dictor’s errors are distributed according to ut ∼ N(0, 1), whereas the disturbances of the predictive
regression, εt, are distributed εt ∼ N(0, 1). The initial value of the process x is generated by
x0 = w0√

1−θ2 , where wt ∼ N(0, 1). Finally, the contemporaneous correlation between the distur-

bances εt and ut is captured by ut = ρεt + wt
√

1− ρ2.

Usage

NormalDGP(n, beta, theta, rho)

Arguments

n the number of observations

beta the regressor coefficient of the predictive regression

theta the autocorrelation coefficient of the predictor

rho the contemporaneous correlation coefficient

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

NormalDGP(n=50, beta=0.5, theta=0.999, rho=0.9)

StudentDGP Student’s t(2) errors

Description

The processes y and x are generated by a predictive regression of the form yt = β + xt−1 +
εt for t = 1, · · · , T , in which the regressors follow an AR(1) process - i.e. xt = θxt−1 + ut.
The predictor’s errors are distributed according to ut ∼ N(0, 1), whereas the disturbances of the
predictive regression, εt, are distributed εt ∼ t(2). An example of a predictive regression DGP with
t(3) perturbations can be found in Campbell and Dufour (1995). Outside a predictive regression
framework, t(2) disturbances have further been considered in Dufour and Taamouti (2010). The
initial value of the process x is generated by x0 = w0√

1−θ2 , where wt ∼ N(0, 1). Finally, the

contemporaneous correlation between the disturbances εt and ut is captured by ρεt + wt
√
1− ρ2.
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Usage

StudentDGP(n, beta, theta, rho)

Arguments

n the number of observations

beta the regressor coefficient of the predictive regression

theta the autocorrelation coefficient of the predictor

rho the contemporaneous correlation coefficient

References

Campbell B, Dufour J (1995). “Exact nonparametric orthogonality and random walk tests.” The
Review of Economics and Statistics, 77(1 ), 1–16.

Dufour J, Taamouti A (2010). “Exact optimal inference in regression models under heteroskedas-
ticity and non-normality of unknown form.” Computational Statistics \& Data Analysis, 54(11),
2532–2553.

Examples

StudentDGP(n=50, beta=0.5, rho=0.999, theta=0.9)
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